Numerical Analysis Preliminary Examination questions August 2012

<u>Instructions</u>: NO CALCULATORS are allowed. This examination contains **seven** problems, each worth 20 points. Do any **five** of the seven problems. Show your work. Clearly indicate which **five** are to be graded.

PLEASE GRADE PROBLEMS: 1 2 3 4 5 6 7

1. Let a_i^* for i = 1, 2, 3, 4 be positive numbers on a computer. With a unit round-off error δ , $a_i^* = a_i(1 + \epsilon_i)$ with $|\epsilon_i| \leq \delta$, where a_i , for i = 1, 2, 3, 4 are the exact numbers. Consider the determinant $D = \begin{vmatrix} a_1 & a_2 \\ a_3 & a_4 \end{vmatrix}$ and its floating point approximation $D^* = \begin{vmatrix} a_1^* & a_2^* \\ a_3^* & a_4^* \end{vmatrix}$. Prove that $D^* = A^*$

$$\frac{D^*}{D} \le e^{4\delta}$$

- 2. Let G be a closed subset of \mathbb{R} .
 - (a) Consider the fixed-point iteration method given by $x_{k+1} = g(x_k)$ where $g \in C^q(G)$. Suppose the iterations converge to a fixed point $z \in G$. Furthermore, assume that q is the first positive integer for which $g^{(q)}(z) \neq 0$ and if q = 1 then |g'(z)| < 1. Then show that the sequence x_k converges to z with order q.
 - (b) Show that the iterative method

$$x_{k+1} = \frac{x_k \left(x_k^2 + 3N\right)}{3x_k^2 + N}$$

has third-order convergence for computing \sqrt{N} .

3. Richardson method for solving a linear system Ax = b is given by

$$x^{(k+1)} = x^{(k)} + \alpha P^{-1}(b - Ax^{(k)}).$$

Show that for any nonsingular matrix P, the method is convergent iff

$$\frac{2\text{Re}\lambda_i}{\alpha|\lambda_i|^2} > 1, \forall i = 1, \dots, n$$

where $\lambda_i \in \mathbb{C}$ are eigenvalues of $P^{-1}A$.

- 4. Let $P_2(x)$ be the quadratic polynomial interpolating f(x) at x_0, x_1, x_2 with the nodes $x_0 \le x_1 \le x_2$.
 - (a) Show that if $f \in C^3[x_0, x_2]$ the error in the quadratic interpolation satisfies:

$$f(x) - P_2(x) = \frac{1}{6}(x - x_0)(x - x_1)(x - x_2)f'''(\xi(x)), \qquad x_0 \le x \le x_2$$

- (b) Find the function $\xi(x)$ explicitly for $f(x) = \frac{1}{x}$ with $x_0 = 1, x_1 = 2, x_2 = 3$ and $x \neq x_k$ for k = 0, 1, 2.
- 5. Consider the following data arising from an engineering application:

(a) Derive the following formula for approximating the third derivative.

$$f'(x) \approx \frac{1}{12h} \left[-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h) \right]$$

- (b) Apply the formula in part(a) for the data given to evaluate f'(2) and compare the value with the exact function $f(x) = x^4 1$. Explain why the formula in part(a) gives the exact value.
- 6. Consider a quadrature formula of the type

$$\int_0^\infty e^{-x} f(x) \, dx = af(0) + bf(c)$$

- (a) Find a, b and c such that the formula is exact for polynomials of the highest degree possible. (Note that $\int_0^\infty e^{-x} x^n dx = n!$).
- (b) Let P(x) be the polynomial interpolating f at the (simple) point x = 0 and double point x = 2; i.e. P(0) = f(0), P(2) = f(2) and P'(2) = f'(2). Determine $\int_0^\infty e^{-x} P(x) dx$ and compare with the result in part (a).
- 7. Consider the initial value problem

$$\frac{dy}{dt} = a + by(t) + c\sin y(t), \qquad 0 \le t \le 1$$

where y(0) = 1 and a, b, c > 0 are constants. Let us suppose that the solution satisfies $\max_{0 \le t \le 1} |y''(t)| = M < \infty. \text{ Consider the approximation } y_{k+1} = y_k + (a + by_k + c \sin(y_k))h$ for $k = 0, 1, 2, \ldots, N - 1$ and let $y_0 = y(0)$ and $h = \frac{1}{N}$. Prove that $|y(1) - y_N| \le \frac{Mhe^{b+c}}{2(b+c)}.$