Introduction to Martin Boundary in Potential Theory

Let $\Omega=\{z\in\mathbb{C}:|z|<1\}$ denote the unit disc in the complex plane and $\overline{\Omega}\smallsetminus\Omega=\{z\in\mathbb{C}:|z|=1\}$ its topological boundary. The Poisson kernel $P:\Omega\times(\overline{\Omega}\smallsetminus\Omega)\to\mathbb{R}$ is

$$P(z, w) = \frac{1 - |z|^2}{|z - w|^2}.$$

It is used to solve the Dirichlet problem on $\overline{\Omega}$ and also to describe all positive harmonic functions on Ω . A theorem of Herglotz says that for any positive harmonic function on Ω , there exists a unique measure μ on the boundary $\overline{\Omega} \setminus \Omega$ such that

$$f(z) = \int_{\overline{\Omega} \setminus \Omega} P(z, w) \ d\mu(w) \ (z \in \Omega).$$

If we replace Ω by a general bounded open subset of \mathbb{R}^N , it is not true in general that the topological boundary $\overline{\Omega} \smallsetminus \Omega$ is big enough to parameterize a set of harmonic functions which generate all positive harmonic functions on Ω . There is, however, a compactification of Ω called the Martin Compactification having associated boundary Δ for which there is an analogue $M: \Omega \times \Delta \to \mathbb{R}$ of the Poisson kernel such that all positive harmonic functions are of the form

$$f(x) = \int_{\Delta} M(x, y) \ d\mu(y) \ (x \in \Omega)$$

for some measure μ on the Martin boundary Δ .

In this elementary talk, we describe how to obtain the Martin boundary and give several examples.