GEORGE MASON UNIVERSITY
DEPARTMENT OF MATHEMATICAL SCIENCES
APPLIED AND COMPUTATIONAL MATHEMATICS SEMINAR


Speaker: Weining Kang, UMBC
Title: Performance Analysis of Many-server Queues with Reneging

Abstract: Motivated by problems of current relevance for call centers, we consider a queuing system with a single pool of N identical servers that process incoming customers who have generally distributed service requirements, and abandon the queue if their waiting time exceeds their so-called patience time. We derive a first-order approximation of this system and study its asymptotic behavior, as the number of servers goes to infinity. We also establish existence of stationary distributions of the state descriptor of such a system. Moreover, under the uniqueness assumption on the invariant state of the associated fluid model solution, we show that, as the number of servers goes to infinity, the sequence of stationary distributions for the fluid scaled system state descriptors converges to the unique invariant state. At last, we show some counterexamples when the uniqueness assumption fails to hold.

Time: Friday, April 9, 2010, 1:30-2:30 p.m.

Place: Science and Tech I, Room 242


Department of Mathematical Sciences
George Mason University
4400 University Drive, MS 3F2
Fairfax, VA 22030-4444
http://math.gmu.edu/
Tel. 703-993-1460, Fax. 703-993-1491