GEORGE MASON UNIVERSITY
DEPARTMENT OF MATHEMATICAL SCIENCES
APPLIED AND COMPUTATIONAL MATHEMATICS SEMINAR


Speaker: Lauren Childs, Virginia Tech
Title: Modeling malaria development in mosquitoes: How fast can mosquitoes pass on infection?

Abstract: The malaria parasite Plasmodium falciparum requires a vertebrate host, such as a human, and a vector host, the Anopheles mosquito, to complete a full life cycle. The portion of the life cycle in the mosquito harbors both the only time of sexual reproduction, expanding genetic complexity, and the most severe bottlenecks experienced, restricting genetic diversity, across the entire parasite life cycle. In previous work, we developed a two-stage stochastic model of the generation of parasite diversity within a mosquito, and were able to demonstrate the importance of heterogeneity amongst parasite dynamics across a population of mosquitoes. Here we focus on the parasite dynamics component to evaluate the first appearance of sporozoites, which is key for determining the time at which mosquitoes first become infectious. We use Bayesian inference techniques with simple models of within-mosquito parasite dynamics coupled with experimental data to estimate a posterior distribution of parameters. We determine that growth rate and the bursting function are key to the timing of first infectiousness, a key epidemiological parameter.

Time: Friday, October 11, 2019, 1:30-2:30pm

Place: Exploratory Hall, Room 4106


Department of Mathematical Sciences
George Mason University
4400 University Drive, MS 3F2
Fairfax, VA 22030-4444
http://math.gmu.edu/
Tel. 703-993-1460, Fax. 703-993-1491