CONTROLLABILITY OF SPACE-TIME FRACTIONAL DIFFUSIVE AND
SUPER-DIFFUSIVE EQUATIONS

MAHAMADI WARMA

Abstract: We consider the following class of fractional partial differential equations of evolution in which two parameters are used to sharpen the models.

\[
\begin{cases}
\mathbb{D}^\alpha_t u(t, x) + (-\Delta)^s u(t, x) = f(t, u) & \text{on } \Omega \times (0, T), \\
+ \text{Initial conditions}, \\
+ \text{Boundary conditions}.
\end{cases}
\]

Here \(T > 0 \) is a fixed time, \(0 < \alpha \leq 2, 0 < s \leq 1, \) \(\Omega \subset \mathbb{R}^N \) is an open set with boundary \(\partial \Omega, \) \((-\Delta)^s \) is the fractional Laplace operator and \(\mathbb{D}^\alpha_t \) denotes a time fractional derivative. After clarifying which initial and boundary conditions make the system well posed, we show what is so far known about the null controllability or/and the approximate controllability of the above system. We conclude by given several open problems. The talk will be delivered for a wide audience avoiding unnecessary technicalities.

M. Warma, University of Puerto Rico (Rio Piedras Campus), College of Natural Sciences, Department of Mathematics, PO Box 70377 San Juan PR 00936-8377 (USA)

E-mail address: mahamadi.warma1@upr.edu