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11:30am I. Bárány, A. Pór.* On a conjecture of Ehrhart.

1:00 pm W.Kuperberg. Optimal configurations of k congruent balls packed in a
sphere in Rn (k ≤ 2n).

1:30 pm L.Montejano. The colorful Hadwiger transversal theorem. (Cancelled and
replaced by a problem session.)

2:00 pm A. Schuermann. Symmetric Delone subdivisions and their application.
2:30 pm A.Bezdek,* G.Ambrus. Revisiting a problem of D. Ismailescu and

R.Radoicic concerning dense point sets.
3:00 pm J. Solymosi. Additive discrete geometry.
3:30 pm W. J. Whiteley. Locating points in a sensor network, with distance informa-

tion.

Saturday, January 14

8:00 am P.Goodey, W, Weil.* Determination of convex bodies by directed projection
functions.

8:30 am R.Howard,* D.Hug. Convex bodies with constant projection functions.
9:00 am A.Koldobsky. On the road between intersection bodies and polar projection

bodies.
9:30 am V.Yaskin,* M. Yaskina. Centroid bodies and comparison of volumes.
10:00am M.Yaskina. Non-intersection bodies all of whose central sections are inter-

section bodies.
10:30am A. Zvavitch. General measures of a convex body.
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ABSTRACTS

Imre Bárány, Attila Pór,* Case Western Reserve University, Cleveland, OH.

On a conjecture of Ehrhart.

Let K be a convex body in the plane whose center of gravity lies at the origin. E. Ehrhart
conjectured that if AreaK ≥ 6 then K contains two antipodal (nonzero) lattice points.
Let M = K ∩ −K and g(K) = AreaM

AreaK
. Ehrhart’s conjecture translates via Minkowski’s

theorem to g(K) ≥ 2
3
. This was proved by Kozinec and Stewart. In this paper we give a

new proof to the theorem and show the stability of g.

Andras Bezdek,* Gergely Ambrus, Auburn University, Auburn, AL.

Revisiting a problem of D. Ismailescu and R.Radoicic concerning dense point sets.

There are several results in the literature where one starts with a few points, describes
a geometric construction to introduce some new points and proves that applying over
and over the same construction one generates an everywhere dense point set of the plane.
Recently D. Ismailescu and R.Radoicic (and earlier B.Grünbaum) showed that starting
with a non collinear point set the repeated use of the construction “add to the figure all
the intersection points of lines which connect pairs of already existing points” leads to a
dense point set of the plane (with the exception of a few particular starting configurations).
They also suggested to study similar problems where one uses the construction “add the
incenters (circumcenters resp.) of all triangles formed by the existing points”. In 2005
together with M. Iorio and M. Silva they settled these problem. Together with G.Ambrus
we also solved these problems. We considered the higher dimensional versions and also
proved that in cases like the circumcenter problem much more is true, namely it is enough
to assume that one adds a point “close” to the circumcenter of existing triangles.

Károly Bezdek, Zsolt Lángi, Márton Naszódi, Peter Papez,* University of Cal-
gary, Calgary, Canada.

Ball-polytopes.

The study of polytopes is one of the oldest and most well researched areas in all of math-
ematics. One way of looking at polytopes is to interpret them as the region bounded by
intersecting hyperplanes. These hyperplanes are just surfaces of zero curvature. Suppose
that we use surfaces of non-zero curvature, say of curvature one. What do we obtain
by doing this? With some care we obtain ball-polytopes. Intuitively, we can think of
these as fattened polytopes, but the concept is more delicate than may first appear. The
aim of this talk is to survey the results obtained by our research group in the study of
ball-polytopes. These results range over many different areas of geometric interest. Most
results pass to higher dimensions, but we will focus on the two- and three-dimensional
cases to provide insight regarding the techniques used in this field of study.

Mohammad Ghomi,* Jaigyoung Choe, Manuel Ritore, Georgia Institute of Tech-
nology, Atlanta, GA.
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Relative isoperimetric inequality outside convex bodies.

We prove that the area of a hypersurface which traps a given volume outside of a convex
body in Euclidean n-space must be greater than or equal to the area of a hemisphere
trapping the given volume on one side of a hyperplane.

Paul Goodey, Wolfgang Weil,* Universität Karlsruhe, Karlsruhe, Germany.

Determination of convex bodies by directed projection functions.

We use a tensor-type integral formula for intrinsic volumes of convex bodies K in d-
dimensional Euclidean space to define a further variant of directed projection functions
and show that these determine the body K uniquely. We then study averages of directed
projection functions and discuss the connections between the resulting integral operators
and previously considered spherical transforms.

Ralph Howard,* Daniel Hug, University of South Carolina, Columbia, SC.

Convex bodies with constant projection functions.

Let Gk(Rn) be the Grassmannian of all k-dimensional subspaces of Rn. If K is a convex
body in Rn, then the k-projection function of K is the function that maps U ∈ Gk(Rn)
to the k dimensional volume of the orthogonal projection, K|U , of K onto U . When this
function is constant K is said to have constant k-brightness. Constant 1-brightness is the
familiar case of constant width.

Theorem. If n ≥ 5 and the convex body K in Rn has constant width and constant
3-brightness, then K is a Euclidean ball.

The main point is that no regularity assumptions are being made about K.

Alexander Koldobsky, University of Missouri, Columbia, MO.

On the road between intersection bodies and polar projection bodies.

Suppose that we start with the Euclidean ball and are allowed to construct new bodies
using three operations: linear transformations, p-addition and closure in the radial metric.
What convex bodies can we get by this procedure? It appears that for p = −1 we get all
intersection bodies (Goodey-Weil), and for p = 1 all polar projection bodies. We study
the geometric structure of intermediate classes of bodies (−1 < p < 1).

Wlodzimierz Kuperberg, Auburn University, Auburn, AL.

Optimal configurations of k congruent balls packed in a sphere in Rn (k ≤ 2n).

The minimum radius of a spherical container in Rn that can hold k unit balls (k ≤ 2n)
has been found by R.A.Rankin in 1955. For k ≤ n + 1 the configuration of the balls is
unique, their centers forming the set of vertices of a (k − 1)-dimensional regular simplex.
For k = 2n, the configuration is unique as well, the balls’ centers forming the set of
vertices of a regular n-dimensional crosspolytope. But uniqueness does not hold in any
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of the remaining cases, k = n+2, n+3, . . . , 2n− 1. Here we present an alternate proof of
Rankin’s result for n + 2 ≤ k ≤ 2n that strengthens it by including a description of all of
the non-unique optimal configurations, some of which exhibit traces of regularity. Also,
we prove that the configuration space Cn(k) is connected, for every k ≤ 2n.

Mark W. Meckes, Stanford University, Stanford, CA.

Central limit properties of convex bodies.

A number of recent papers have shown that in certain respects projections of the uniform
measure on a high-dimensional convex body behave like projections of product measures.
We will discuss recent Berry-Esseen-type results along these lines. The results are obtained
via a novel method in convex geometry, namely Stein’s method for proving probabilistic
limit theorems.

Luis Montejano, University of Guerrero, Acapulco, Mexico.

The colorful Hadwiger transversal theorem.

There are multiplied or colorful versions of Helly and Caratheodory theorems in the sense
of Bárány. The aim of this talk is to discuss the corresponding colorful version of the
following Hadwiger transversal theorem: Let F = {A1, ..., An} be a ordered collection of
convex sets in the plane. Assume F is the union of C1, C2 and C3 and for every choice
Ai ∈ C1, Aj ∈ C2 and Ak ∈ C3 there is a line transversal to Ai, Aj and Ak consistent with
the order. Then, for some p ∈ {1, 2, 3} there is a line transversal to all convex sets of Cp.

Hadwiger’s theorem can be generalized, in the sense of Goodman and Pollack, to
higher dimensions. So, we shall discuss also the colorful version of the Goodman-Pollack
hyperplane transversal theorem.

Laura J. Schmidt,* Carl Lee, University of Wisconsin-Stout, Menomonie, WI.

f-Vectors of regular triangulations.

Billera and Lee describe a set of necessary conditions for f -vectors of antistars in simplicial
polytopes, and hence for regular triangulations and (by duality) for unbounded, simple
polyhedra. It is not yet known whether these conditions are sufficient. In joint work
with Carl Lee we construct certain classes of regular triangulations to demonstrate the
sufficiency of these conditions in low dimensions. The construction exploits some of the
combinatorial structure of the simplicial polytopes used in the proof of the g-Theorem.

Achill Schuermann, University of Magdeburg, Magdeburg, Germany.

Symmetric Delone subdivisions and their application.

A classical topic in Discrete Geometry with various applications to other fields are Delone
subdivisions of discrete point sets. In two classical papers, Voronoi developed a theory of
L-types, which classifies geometric lattices in d-dimensional Euclidean spaces according
to their Delone subdivision or Dirichlet-Voronoi cell respectively. For a given dimension d
such a classification can theoretically be used to solve the lattice covering problem. This
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is impratical though for d ≥ 6. We therefore describe an extension of the classical theory,
which enables us to classify Delone subdivisions with certain prescribed properties. Using
convex optimization techniques, we apply the new theory to compute various new best
known covering lattices. Moreover, we show how to use the theory to obtain a complete
classification of totally real thin number fields.

Carsten Schuett, Elisabeth Werner,* Case Western Reserve University, Cleveland,
OH.

Approximation of the Euclidean ball by polytopes.

We prove a result on approximation of the Euclidean ball by polytopes with a fixed
number of vertices.

Jozsef Solymosi, University of British Columbia, Vancouver, Canada.

Additive discrete geometry.

In this talk we show examples how to apply results from additive number theory to discrete
geometry.

Alina Stancu, University of Massachusetts, Lowell, MA.

A characterization of ellipsoids via illumination bodies.

Let K ⊂ Rn be a convex body and let δ > 0 be a real number. We call the δ-illumination
body associated to K the convex body Kδ = {x ∈ Rn : V oln(co[x, K] \ K) ≤ δ}. The
subject of this talk is the conjecture stating that K is homothetic to Kδ if and only if K
is an ellipsoid.

Walter J. Whiteley, York University, Toronto, Canada.

Locating points in a sensor network, with distance information.

In many applications, there is a basic geometric and combinatorial problem: do we have
enough geometric data (pairwise distances) to locate all of the objects uniquely? Recent
results of Jackson and Jordan characterize which graphs of distances G in the plane give
unique locations, for ‘generic’ configurations. We present some new results on graphs G in
the plane such that the ‘square graph’ G2 (adding edges between neighbors of each vertex
in G) gives this generic global rigidity. These are graphs which are (i) connected and (ii)
removing a single edge can only separate a single vertex, not two larger components. The
extension to 3-space is: G3 gives generic global rigidity if and only if G is (i) connected,
and (ii) removing any 2-valent vertex can only separate a single vertex, not two larger
components.

We close with a set of new conjectures about globally rigid graphs in adjacent dimen-
sions (n-space and n + 1-space), using the techniques of coning, and raising the power.
The initial results evolved from joint work with Brian Anderson (Australian National Uni-
versity), David Goldenberg, Stephen Morse, Richard Yang (Yale), Tolga Eren and Peter
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Belhumeur (Columbia). The new results include joint work with Matthew Cheung, York
University.

Vladyslav Yaskin,* Maryna Yaskina, University of Missouri, Columbia, MO.

Centroid bodies and comparison of volumes.

For −1 < p < 1 we introduce the concept of a polar p-centroid body Γ∗pK of a star body
K. We consider the question of whether Γ∗pK ⊂ Γ∗pL implies vol(L) ≤ vol(K). Our results
extend the studies by Lutwak in the case p = 1 and Grinberg, Zhang in the case p > 1.

Maryna Yaskina, University of Missouri, Columbia, MO.

Non-intersection bodies all of whose central sections are intersection bodies.

We construct symmetric convex bodies that are not intersection bodies, but all of their
central hyperplane sections are intersection bodies. This result extends the studies by
Weil in the case of zonoids and by Neyman in the case of subspaces of Lp.

Artem Zvavitch, Kent State University, Kent, OH.

General measures of a convex body.

In this talk we will show how different results and formulas in Convex Geometry known
only for the case of Volume measure can be adapted to the case of a general measure. We
will also consider a number of inequalities for general measures which turned to be useful
to prove new results for a regular volume case.
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RESEARCH PROBLEMS

1. Shades and convexity of hypersurfaces

Let M ⊂ Rn+1 be a smooth hypersurface homeomorphic to the sphere Sn, and n : M → Sn

be a unit normal vector field, or the Gauss map of M . For every unit vector u ∈ Sn, the
corresponding shade cast on M is defined by

Su := { p ∈ M | 〈n(p), u〉 > 0 },

where 〈·, ·〉 denotes the standard inner product in Rn+1. Suppose that Su is homeomorphic
to a ball for each u.

Problem. Does it then follow that M is convex, i.e., it bounds a convex body? More
generally, is connectedness of each shade Su enough to ensure convexity of M?

For n = 1, it is an easy exercise to show that the answer is yes. For n = 2, the answer is
also yes as was proved in [1]. For n ≥ 3, however, the answer is not known.

References

[1] M. Ghomi, Shadows and convexity of surfaces, Ann. of Math. 155 (2002), 281–293.

Mohammad Ghomi, Georgia Institute of Technology

2. Sizes of projections of convex bodies

Problem 1. Let K1, K2 be convex bodies in E4. Assume that, for every u ∈ S3, the
surface area of the projection K1|u⊥ is the same as that of K2|u⊥. Does it follow that,
for every 2-dimensional subspace E of E4, the area of K1|E equals that of K2|E?

The result is true both for centrally symmetric bodies and for polytopes. The reverse
implication is always true and is a consequence of the Cauchy-Kubota formulas. A more
general formulation of the problem, using intrinsic volumes Vi, is the following.

Problem 2. Let K1, K2 be convex bodies in En and, for j ∈ {2, . . . , n − 1}, denote by
G(n, j) the Grassmannian of j-dimensional subspaces of En. If for some 2 ≤ i < j we
have Vi(K1|E) = Vi(K2|E) for all E ∈ G(n, j), does it follow that Vi(K1|F ) = Vi(K2|F )
for all F ∈ G(n, i)?

An early version of these problems can be traced back to Minkowski [4] and this was
taken up by Firey [1]. An overview of the general area is presented in [3] and the details
of the polytopal case can be found in [2].

References
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[2] P.Goodey, R. Schneider and W.Weil, Projection functions on higher rank Grassman-
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Operator Theory: Adv. and Appl. 77, Birkhäuser, Basel 1995, 75–90.
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ciety Mathematical Studies 6 (1997), 23–53.

[4] H. Minkowski, Über die Körper konstanter Breite, (Russian), Mat. Sbornik 25 (1904),
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Paul Goodey, University of Oklahoma

3. The extreme points of the collection of sets of constant width

Let Cn be the collection of all compact convex subsets of Rn modulo translations.
Then is two compact convex sets are identified if they are translates of each other. To
make this a bit more precise, for K ∈ Cn let hK be the support function of K viewed as
function on the unit sphere Sn−1. Let C(Sn−1) be the Banach space of continuous real
valued functions on Sn−1. Let L be the subspace of C(Sn−1) consisting of the restrictions
of linear functions to Sn−1. Then L is an n-dimensional closed subspace of C(Sn−1). Two
compact convex sets differ by a translation if and only if the difference of their support
function is in L. Let C(Sn−1)/L be the quotient space of C(Sn−1) by L. Then the map
K 7→ hK + L gives a bijection of Cn with the set {hK : K ∈ Cn}/L. Minkowski sums of
convex sets corresponds to addition of support functions. Thus {hK : K ∈ Cn}/L is a
convex subset of C(Sn−1)/L.

Let Wn be the subset of Cn of compact convex subsets of constant width 2. Then it is
not hard to check that Wn is a compact convex subset of C(Sn−1)/L. Therefore, by the
Krein-Milman Theorem, it is the closed convex hull of its extreme points.

Problem: What are the extreme points of Wn?

In two dimensions this is not hard to answer. Identify S1 with the quotient R/2πZ.
Then C(S1) is identified with the 2π periodic functions on R and L = Span{cos(θ), sin(θ)}.
The map θ 7→ θ + π corresponds to the antipodal map of S1. Let p : S1 → {−1, 1} be
measurable, odd with respect to the antipodal map (that is p(θ +π) = −p(θ)) and satisfy∫ 2π

0

p(θ) cos(θ) dθ =

∫ 2π

0

p(θ) sin(θ) dθ = 0. (1)

Then, using Fourier series or the solution to the 2-dimensional Minkowski problem, it can
be seen there is a unique solution, h, to h′′(θ)+h(θ) = 1+p(θ). This h will be the support
function of a planar convex body that is an extreme point of W2, and all extreme points
of W2 are of this form. To make this somewhat more geometric consider an odd two
valued step function p : S1 → {−1, 1} that satisfies (1). Then the corresponding convex
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body will be a Reuleaux figure as in the figure below. The set all such Reuleaux figures
is dense in the set of all extreme points of W2.

To the best of my knowledge there is no such description of a dense subset of the set
of extreme points of Wn for n ≥ 3.

One motivation for finding the extreme points of Wn is trying to generalize the
Blaschke-Lebesgue theorem to higher dimensions. The problem is to find the element
of Wn of least volume. When n = 2 the result of Blaschke and Lebesgue is that this
minimizer is the Reuleaux triangle. Here is a passable approach to this question. If V (K)
is the volume of K, then the Brunn-Minkowski inequality implies that K 7→ V (K)1/n is a
concave function on Wn. Therefore a minimizer of V (·) on Wn will occur at an extreme
point of Wn. And in two dimensions one way to prove the Blaschke-Lebesgue is to check
that of all Reuleaux figures, the Reuleaux triangle triangle has the least area. Hopefully
knowing the extreme points of Wn would also be useful in generalizing other extremal
problems for sets of constant width.

Here are a few references related to this problem. For sets of constant width, Reuleaux
figure, and related topics see the excellent survey article [3] and the references therein.
For recent results related to the Blaschke-Lebesgue Theorem, attempts to generalize it to
higher dimensions, and some related problems see [1, 2, 4].

References

[1] S. Campi, A.Colesanti, and P.Gronchi, Minimum problems for volumes of convex bodies,
Partial differential equations and applications, Lecture Notes in Pure and Appl. Math.,
vol. 177, Dekker, New York, 1996, pp. 43–55. MR 1371579 (96j:52012)

[2] Evans M.Harrell, II, A direct proof of a theorem of Blaschke and Lebesgue, J. Geom.
Anal. 12 (2002), no. 1, 81–88. MR 1 881 292

[3] E.Heil, H. Martini, Special convex bodies, Handbook of convex geometry, Vol. A, B,
North-Holland, Amsterdam, 1993, pp. 347–385. MR 94h:52001

[4] Y. S. Kupitz, H.Martini, On the isoperimetric inequalities for Reuleaux polygons, J.
Geom. 68 (2000), no. 1-2, 171–191. MR 1779848 (2001h:52006)

Ralph Howard, University of South Carolina

4. Monotonicity of volumes of random simplices

For a convex body K ⊂ Rn, let

M(K) =
1

voln(K)n+1

∫
K

· · ·
∫

K

voln(conv{x1, . . . , xn+1})dx1 · · · dxn+1
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denote the mean volume of a random simplex in K.

Conjecture: If K1, K2 ⊂ Rn are convex bodies with K1 ⊂ K2, then M(K1) ≤ M(K2).

Weaker Conjecture: If K1, K2 ⊂ Rn are convex bodies with K1 ⊂ K2, then M(K1) ≤
anM(K2), for some universal constant a.

The motivation for the conjectures comes from the slicing problem. Recall that the
slicing problem asks whether the isotropic constant LK of every convex body K is bounded
above by some absolute constant c. The connection is through the formula

LK ≈
(

M(K)

voln(K)

)1/n√
n

(see for example A.Giannopoulos [1]). In fact, combined with a recent result of B. Klartag
(Theorem 1.1 of [2]), this formula and the weaker conjecture would give a positive solution
to the slicing problem. Furthermore, if a still weaker version of the conjecture can be
proved with a = a(n), one obtains LK ≤ ca(n). The best known universal bound is
LK ≤ cn1/4 (Corollary 1.2 in the same paper of Klartag).

A potential advantage of this approach to the slicing problem, aside from the geometric
plausibility of the conjectures, is the affine invariance of M(K), as opposed to the more
usual expressions for LK which are variational or require fixing a position of K.

References

[1] A. Giannopoulos, Notes on isotropic convex bodies,
http://eudoxos.math.uoa.gr/~apgian- nop/isotropic-bodies.ps.

[2] B. Klartag, On convex perturbations with a bounded isotropic constant, to appear in
J. Funct. Anal.

MarkW.Meckes, Stanford University

5. Sphere covering

Roughly speaking, the sphere covering problem asks to determine most economical ways
to cover Rd with equally sized spheres. To give a precise description, we consider a discrete
set Λ ⊂ Rd and its point density

dens(Λ) = lim sup
λ→∞

λd · vol(Bd)

card(Λ ∩ λBd)
,

where Bd is the unit ball of Rd. If Λ is a lattice (a discrete subgroup) of Rd, then dens(Λ)
is equal to the determinant det(Λ) of the lattice, i.e. the volume of a fundamental domain
of Λ. The covering radius of Λ is given by

µ(Λ) = inf{µ > 0 : Λ + µBd = Rd}

10



and the covering density of Λ is defined by

Θ(Λ) =
µ(Λ)d

dens(Λ)
· volBd.

Note that the covering density is invariant with respect to similarities of Rd.

Sphere Covering Problem: Determine Θd = min
Λ

Θ(Λ) and discrete sets in Rd attaining

it.

An introduction, together with many references is given in the highly recommended
book by Conway and Sloane [2]. In dimension d = 2 the problem has been solved by
Kershner [5]. Here the optimal sphere covering is attained by the hexagonal lattice.
In dimensions d > 2 the answer to the general sphere covering problem is unknown.
Nevertheless, the problem has been solved with the restriction to lattices for dimensions
d = 3, 4, 5 (cf. [1,2,6]). Recently we found new best known sphere coverings for dimensions
d = 6, . . . , 21 (see [4]). For an updated list with additional information on the involved
lattices we refer to our webpage [7]. The following are challenging open sphere covering
problems.

Problem 1. (“Kepler analogue”) Prove or disprove covering optimality of the bcc-lattice
(A∗3, cf. [2]).

Problem 2. Prove or disprove lattice covering optimality of the recently found lattices
Lc

6 for d = 6 and Lc
7 for d = 7 (cf. [7] for details).

Problem 3. Prove lattice covering optimality of the Leech lattice for d = 24 (cf. [2]).

Problem 4. Find asymptotically good coverings. How close can the covering density
come to the lower bound by Coxeter, Few and Rogers (cf. [2]). It is obtained by consid-
ering an “ideal covering” with sphere centers being the vertices of a simplicial subdivision
of Rd, consisting of regular simplices only.

Problem 5. Find non–lattice coverings, which are less dense than any lattice covering
in their dimension.

Problem 6. Find new best known (lattice) sphere coverings for d ≥ 6.
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6. Sections and projections of homothetic convex sets

Let K1, K2 ⊂ Rn be closed convex sets, possibly unbounded.

Problem. Is it true that K1 and K2 are homothetic if and only if either of the conditions
(a), (b) below holds?

(a) The orthogonal projections of K1 and K2 on each 2-dimensional plane are homoth-
etic.

(b) There are points p1, p2 ∈ Rn such that for every pair of parallel 2-dimensional planes
L1 and L2 through p1 and p2, respectively, the sections K1 ∩ L1 and K2 ∩ L2 are
both empty or homothetic.

This problem has a well-known affirmative solution when both K1 and K2 are compact
(see Rogers [2] and Burton [1]). The case when K1 and K2 are translates of one another
is considered in Soltan [3].

References
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(2006).

Valeriu Soltan, George Mason University

7. Triple points determined by unit circles

Given a family of unit circles on the plane, a triple point is that incident to at least three
circles from the family.

Problem 1. What is the maximum number of triple points determined by n pairwise
distinct unit circles in the plane?

Problem 2. Prove that the maximum number of triple points determined by n pairwise
distinct unit circles is o(n2).

On the other hand, I don’t know how to find n pairwise distinct unit circles that determine
at least n1+ε triple points.

Jozsef Solymosi, University of British Columbia
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8. Strictly convex indecomposable bodies

Let n ≥ 3. A convex body K ⊂ Rn is strictly convex, if it does not contain any segments
in the boundary, and K is indecomposable, if a decomposition as a Minkowski sum K =
M + L (with convex bodies M, L) implies M = αK + x and L = βK + y, for some
α, β ≥ 0 and x, y ∈ Rn. Both, the set of all strictly convex bodies in Rn and the set
of indecomposable convex bodies, are dense Gδ-sets in the set Kn of all convex bodies
(e.g. polytopes with triangular 2-faces are indecomposable). Let In be the set of convex
bodies K, which are strictly convex and indecomposable. As an intersection of two dense
Gδ-sets, In is a dense Gδ-set in Kn.

The problem is to find/describe one element of In.

Wolfgang Weil, Universität Karlsruhe

9. Area discrepancy of unimodular triangulations

It was first shown by Monsky [3] (see also Stein & Szabó [4]) that a square cannot be
dissected into an odd number 2n + 1 of equal-area triangles. Monsky’s proof is algebraic,
via 2-adic valuations, and does not provide an estimate for the minimum discrepancy of
odd dissections,

f(2n + 1) := min
∆∈D2n+1

|max
σ∈∆

A(σ)−min
σ∈∆

A(σ)|,

where D2n+1 denotes the set of all dissections of the unit square into n + 1 triangles, and
A(σ) is the area of the triangle σ.

The problem is to determine the asymptotics of f(2n+1). It is clear that f(2n+1) ≤
1
2n
− 1

2(n+1)
= 1

2n(n+1)
. Experiments by Mansow [2] (based on a combinatorial enumeration

of triangulations, and numerical minimization of the discrepancy) suggest that f(2n + 1)
decreases singly-exponentially:

f(3) = 0.25

f(5) ≤ 0.0225

f(7) ≤ 0.0031

f(9) ≤ 0.00014

f(11) ≤ 0.00000415.

At the same time, gap theorems from semialgebraic geometry (see Basu et al. [1, S. 13.2])
together with Monsky’s result and with the finiteness of the number of combinatorial
types imply a doubly exponential lower bound on f(2n + 1).
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