What can be improved?

$$\mathbb{E}[f(w_k) - f_*] = \mathcal{O}\left(\frac{(L/c)(M/c)}{k}\right)$$

What can be improved?

$$\mathbb{E}[f(w_k) - f_*] = \mathcal{O}\left(\frac{(L/c)(M/c)}{k}\right)$$

Two-dimensional schematic of methods

2D schematic: Noise reduction methods

2D schematic: Second-order methods

Even more...

- ▶ momentum
- ▶ acceleration
- ▶ (dual) coordinate descent
- trust region / step normalization
- exploring negative curvature
- ▶

Outline

GD and SG

GD vs. SG

Beyond SG

Noise Reduction Methods

Second-Order Methods

Conclusion

Optimization Methods for Large-Scale Machine Learning

Idea #1: Dynamic sampling

We have seen

- fast initial improvement by SG
- long-term linear rate achieved by batch gradient
- \implies accumulate increasingly accurate gradient information during optimization.

But at what rate?

- too slow: won't achieve linear convergence
- ▶ too fast: loss of optimal work complexity

Geometric decrease

Correct balance achieved by decreasing noise at a geometric rate.

Theorem 3

Suppose f is c-strongly convex and L-smooth and that

 $\mathbb{V}_k[g_k] \leq M\zeta^{k-1}$ for some $M \geq 0$ and $\zeta \in (0,1)$.

Then, the SG method with a fixed stepsize $\alpha = 1/L$ yields

$$\mathbb{E}[f(w_k) - f_*] \le \omega \rho^{k-1}$$

where

$$\omega := \max\left\{\frac{M}{c}, f(w_0) - f_*\right\}$$

and $\rho := \max\left\{1 - \frac{c}{2L}, \zeta\right\} < 1.$

Effectively ties rate of noise reduction with convergence rate of optimization.

Geometric decrease

Proof.

The now-familiar inequality

$$\mathbb{E}_{k}[f(w_{k+1})] - f(w_{k}) \leq -\alpha \|\nabla f(w_{k})\|_{2}^{2} + \frac{1}{2}\alpha^{2}L\mathbb{E}_{k}[\|g_{k}\|_{2}^{2}]$$

strong convexity, and the stepsize choice lead to

$$\mathbb{E}[f(w_{k+1}) - f_*] \le \left(1 - \frac{c}{L}\right) \mathbb{E}[f(w_k) - f_*] + \frac{M}{2L} \zeta^{k-1}.$$

- Exactly as for batch gradient (in expectation) except for the last term.
- ▶ An inductive argument completes the proof.

Practical geometric decrease (unlimited samples)

How can geometric decrease of the variance be achieved in practice?

$$g_k := \frac{1}{|\mathcal{S}_k|} \sum_{i \in \mathcal{S}_k} \nabla f_i(w_k) \text{ with } |\mathcal{S}_k| = \lceil \tau^{k-1} \rceil \text{ for } \tau > 1,$$

since, for all $i \in \mathcal{S}_k$,

$$\mathbb{V}_k[g_k] \le \frac{\mathbb{V}_k[\nabla f_i(w_k)]}{|\mathcal{S}_k|} \le M(\lceil \tau \rceil)^{k-1}.$$

But is it too fast? What about work complexity?

same as SG as long as
$$\tau \in \left(1, \left(1 - \frac{c}{2L}\right)^{-1}\right]$$
.

Illustration

Figure: SG run with a fixed stepsize (left) vs. dynamic SG with fixed stepsize (right)

Additional considerations

In practice, choosing τ is a challenge.

- ▶ What about an adaptive technique?
- ▶ Guarantee descent in expectation
- ▶ Methods exist, but need geometric sample size increase as backup

Idea #2: Gradient aggregation

"I'm minimizing a finite sum and am willing to store previous gradient(s)."

$$F(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w)$$

Idea: reuse and/or revise previous gradient information in storage.

- ▶ SVRG: store full gradient, correct sequence of steps based on perceived bias
- ▶ SAGA: store *elements* of full gradient, revise as optimization proceeds
- SARAH: stochastic recursive gradient method

At $w_k =: w_{k,1}$, compute a batch gradient:

$\nabla f_1(w_k)$	$ abla f_2(w_k)$	$ abla f_3(w_k)$	$ abla f_4(w_k)$	$ abla f_5(w_k)$
		$g_{k,1} \leftarrow \nabla F(w_k)$	1	

then step

 $w_{k,2} \leftarrow w_{k,1} - \alpha g_{k,1}$

Now, iteratively, choose an index *randomly* and correct bias:

$\nabla f_1(u$	$v_k)$	$\nabla f_2(w_k)$	$\nabla f_3(w_k)$	$ abla f_4(w_{k,2})$	$ abla f_5(w_k)$
<u> </u>					

 $g_{k,2} \leftarrow \nabla F(w_k) - \nabla f_4(w_k) + \nabla f_4(w_{k,2})$

then step

 $w_{k,3} \leftarrow w_{k,2} - \alpha g_{k,2}$

Now, iteratively, choose an index *randomly* and correct bias:

$\nabla f_1(w_k)$) $\nabla f_2(u$	$\nabla v_{k,3}$) $\nabla f_3(w)$	$_k) \qquad abla f_4(w_k)$	$\nabla f_5(w_k)$
L				

 $g_{k,3} \leftarrow \nabla F(w_k) - \nabla f_2(w_k) + \nabla f_2(w_{k,3})$

then step

 $w_{k,4} \leftarrow w_{k,3} - \alpha g_{k,3}$

Each $g_{k,j}$ is an unbiased estimate of $\nabla F(w_{k,j})!$

Algorithm SVRG

1: Choose an initial iterate $w_1 \in \mathbb{R}^d$, stepsize $\alpha > 0$, and positive integer m.

2: for
$$k = 1, 2, ...$$
 do

- 3: Compute the batch gradient $\nabla F(w_k)$.
- 4: Initialize $w_{k,1} \leftarrow w_k$.

5: **for**
$$j = 1, ..., m$$
 do

6: Chose i uniformly from $\{1, \ldots, n\}$.

7: Set
$$g_{k,j} \leftarrow \nabla f_i(w_{k,j}) - (\nabla f_i(w_k) - \nabla F(w_k))$$
.

8: Set
$$w_{k,j+1} \leftarrow w_{k,j} - \alpha g_{k,j}$$
.

9: end for

10: Option (a): Set
$$w_{k+1} = \tilde{w}_{m+1}$$

11: Option (b): Set
$$w_{k+1} = \frac{1}{m} \sum_{j=1}^{m} \tilde{w}_{j+1}$$

12: Option (c): Choose j uniformly from $\{1, \ldots, m\}$ and set $w_{k+1} = \tilde{w}_{j+1}$. 13: end for

If f is c-strongly convex and L-smooth, then options (b) and (c) are linearly convergent for certain (α, m)

At w_1 , compute a batch gradient:

$\nabla f_1(w_1)$	$ abla f_2(w_1)$	$ abla f_3(w_1)$	$ abla f_4(w_1)$	$ abla f_5(w_1)$
an step		$g_1 \leftarrow \nabla F(w_1)$		

then step

 $w_2 \leftarrow w_1 - \alpha g_1$

Now, iteratively, choose an index *randomly* and revise table entry:

 $g_2 \leftarrow \text{new entry} - \text{old entry} + \text{average of entries (before replacement)}$

then step

 $w_3 \leftarrow w_2 - \alpha g_2$

Now, iteratively, choose an index *randomly* and revise table entry:

|--|

 $g_3 \leftarrow \text{new entry} - \text{old entry} + \text{average of entries (before replacement)}$

then step

 $w_4 \leftarrow w_3 - \alpha g_3$

Each g_k is an unbiased estimate of $\nabla F(w_k)$!

Algorithm SAGA

- 1: Choose an initial iterate $w_1 \in \mathbb{R}^d$ and stepsize $\alpha > 0$.
- 2: for i = 1, ..., n do
- 3: Compute $\nabla f_i(w_1)$.
- 4: Store $\nabla f_i(w_{[i]}) \leftarrow \nabla f_i(w_1)$.
- 5: end for
- 6: for k = 1, 2, ... do
- 7: Choose j uniformly in $\{1, \ldots, n\}$.
- 8: Compute $\nabla f_j(w_k)$.

9: Set
$$g_k \leftarrow \nabla f_j(w_k) - \nabla f_j(w_{[j]}) + \frac{1}{n} \sum_{i=1}^n \nabla f_i(w_{[i]})$$

- 10: Store $\nabla f_j(w_{[j]}) \leftarrow \nabla f_j(w_k)$.
- 11: Set $w_{k+1} \leftarrow w_k \alpha g_k$.

12: end for

If f is c-strongly convex and L-smooth, then linearly convergent for certain α

- storage of gradient vectors reasonable in some applications
- with access to feature vectors, need only store n scalars

Idea #3: Iterative averaging

Averages of SG iterates are less noisy:

$$w_{k+1} \leftarrow w_k - \alpha_k g_k$$

 $\tilde{w}_{k+1} \leftarrow \frac{1}{k+1} \sum_{j=1}^{k+1} w_j$ (in practice: running average)

Unfortunately, no better theoretically when $\alpha_k = \mathcal{O}(1/k)$, but

- ▶ long steps (say, $\alpha_k = O(1/\sqrt{k})$) and averaging
- ▶ lead to a better sublinear rate (like a second-order method?)

See also

- mirror descent
- primal-dual averaging

Idea #3: Iterative averaging

Averages of SG iterates are less noisy:

$$w_{k+1} \leftarrow w_k - \alpha_k g_k$$

 $\tilde{w}_{k+1} \leftarrow \frac{1}{k+1} \sum_{j=1}^{k+1} w_j$ (in practice: running average)

Figure: SG run with $\mathcal{O}(1/\sqrt{k})$ stepsizes (left) vs. sequence of averages (right)

Outline

GD and SG

GD vs. SG

Beyond SG

Noise Reduction Methods

Second-Order Methods

Conclusion

Optimization Methods for Large-Scale Machine Learning

Two-dimensional schematic of methods

2D schematic: Second-order methods

Ideal: Scale invariance

Neither SG nor batch gradient are invariant to linear transformations!

$$\min_{w \in \mathbb{R}^d} f(w) \implies w_{k+1} \leftarrow w_k - \alpha_k \nabla f(w_k)$$
$$\min_{\tilde{w} \in \mathbb{R}^d} f(B\tilde{w}) \implies \tilde{w}_{k+1} \leftarrow \tilde{w}_k - \alpha_k B \nabla f(B\tilde{w}_k) \quad \text{(for given } B \succ 0)$$

Scaling latter by B and defining $\{w_k\} = \{B\tilde{w}_k\}$ yields

 $w_{k+1} \leftarrow w_k - \alpha_k B^2 \nabla f(w_k)$

- Algorithm is clearly affected by choice of B
- Surely, some choices may be better than others (in general?)

Consider the function below and suppose that $w_k = (0, 3)$:

Batch gradient step $-\alpha_k \nabla f(w_k)$ ignores curvature of the function:

Newton scaling $(B = (\nabla f(w_k))^{-1/2})$: gradient step moves to the minimizer:

 \ldots corresponds to minimizing a quadratic model of f in the original space:

Deterministic case to stochastic case

What is known about Newton's method for deterministic optimization?

- local rescaling based on inverse Hessian information
- locally quadratically convergent near a strong minimizer
- ▶ global convergence rate better than gradient method (*when regularized*)

However, it is way too expensive in our case.

- ▶ But all is not lost: scaling is viable.
- ▶ Wide variety of scaling techniques improve performance.
- Our convergence theory for SG still holds with *B*-scaling.
- ... could hope to remove condition number (L/c) from convergence rate!
- ▶ Added costs can be minimal when coupled with noise reduction.

Idea #1: Inexact Hessian-free Newton

Compute Newton-like step

$$\nabla^2 f_{\mathcal{S}_k^H}(w_k) s_k = -\nabla f_{\mathcal{S}_k^g}(w_k)$$

- mini-batch size for Hessian $=: |\mathcal{S}_k^H| < |\mathcal{S}_k^g| :=$ mini-batch size for gradient
- cost for mini-batch gradient: g_{cost}
- use CG and terminate early: max_{cg} iterations
- ▶ in CG, cost for each Hessian-vector product: $factor \times g_{cost}$
- choose $max_{cg} \times factor \approx$ small constant so total per-iteration cost:

$$max_{cg} \times factor \times g_{cost} = \mathcal{O}(g_{cost})$$

▶ convergence guarantees for $|S_k^H| = |S_k^g| = n$ are well-known

Idea #2: (Generalized) Gauss-Newton

Classical approach for nonlinear least squares, linearize inside of loss/cost:

$$f(w;\xi) = \frac{1}{2} \|h(x_{\xi};w) - y_{\xi}\|_{2}^{2}$$

$$\approx \frac{1}{2} \|h(x_{\xi};w_{k}) + J_{h}(w_{k};\xi)(w - w_{k}) - y_{\xi}\|_{2}^{2}$$

Leads to Gauss-Newton approximation for second-order terms:

$$G_{\mathcal{S}_{k}^{H}}(w_{k};\xi_{k}^{H}) = \frac{1}{|\mathcal{S}_{k}^{H}|} J_{h}(w_{k};\xi_{k,i})^{T} J_{h}(w_{k};\xi_{k,i})$$

Can be generalized for other (convex) losses:

$$\widetilde{G}_{\mathcal{S}_{k}^{H}}(w_{k};\xi_{k}^{H}) = \frac{1}{|\mathcal{S}_{k}^{H}|} J_{h}(w_{k};\xi_{k,i})^{T} \underbrace{\underline{\mathcal{H}_{\ell}(w_{k};\xi_{k,i})}}_{= \frac{\partial^{2}\ell}{\partial h^{2}}} J_{h}(w_{k};\xi_{k,i})$$

- costs similar as for inexact Newton
- ▶ ... but scaling matrices are always positive (semi)definite
- ▶ see also *natural gradient*, invariant to more than just linear transformations

Idea #3: (Limited memory) quasi-Newton

Only approximate second-order information with gradient displacements:

Secant equation $H_k v_k = s_k$ to match gradient of f at w_k , where

$$s_k := w_{k+1} - w_k$$
 and $v_k := \nabla f(w_{k+1}) - \nabla f(w_k)$

Deterministic case to stochastic case

Standard update for inverse Hessian $(w_{k+1} \leftarrow w_k - \alpha_k H_k g_k)$ is BFGS:

$$H_{k+1} \leftarrow \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right)^T H_k \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right) + \frac{s_k s_k^T}{s_k^T v_k}$$

What is known about quasi-Newton methods for deterministic optimization?

- local rescaling based on iterate/gradient displacements
- \blacktriangleright strongly convex function \implies positive definite (p.d.) matrices
- only first-order derivatives, no linear system solves
- locally superlinearly convergent near a strong minimizer

Extended to stochastic case? How?

- \blacktriangleright Noisy gradient estimates \implies challenge to maintain p.d.
- Correlation between gradient and Hessian estimates
- Overwriting updates \implies poor scaling that plagues!

Proposed methods

gradient displacements using same sample:

$$v_k := \nabla f_{\mathcal{S}_k}(w_{k+1}) - \nabla f_{\mathcal{S}_k}(w_k)$$

(requires two stochastic gradients per iteration)

▶ gradient displacement replaced by action on subsampled Hessian:

$$v_k := \nabla^2 f_{\mathcal{S}_k^H}(w_k)(w_{k+1} - w_k)$$

- decouple iteration and Hessian update to amortize added cost
- \blacktriangleright limited memory approximations (e.g., L-BFGS) with per-iteration cost 4md

Idea #4: Diagonal scaling

Restrict added costs through only diagonal scaling:

$$w_{k+1} \leftarrow w_k - \alpha_k D_k g_k$$

Ideas:

- $D_k^{-1} \approx \text{diag}(\text{Hessian (approximation)})$
- $D_k^{-1} \approx \text{diag}(\text{Gauss-Newton approximation})$
- ▶ $D_k^{-1} \approx$ running average/sum of gradient components

Last approach can be motivated by minimizing regret.

- ▶ RMSProp
- ADAGRAD
- ► ADAM
- Batch normalization
- TRish

Outline

GD and SG

GD vs. SG

Beyond SG

Noise Reduction Methods

Second-Order Methods

Conclusion

Optimization Methods for Large-Scale Machine Learning

Why should we care?

Mathematical optimization is one of the foundations of machine learning.

- ▶ Understanding machine learning requires understanding optimization!
- ... after all, the effectiveness of that model that you trained depends greatly on the optimization algorithm that produced it.

Why is optimization for machine learning difficult?

- ▶ We're using randomized algorithms to "solve" an unknown problem
- ▶ ... and somehow it can be argued that's the best thing to do!

References

- * Léon Bottou, Frank E. Curtis, and Jorge Nocedal.
 Optimization Methods for Large-Scale Machine Learning. SIAM Review, 60(2):223-311, 2018.
- * Frank E. Curtis and Katya Scheinberg.

Optimization Methods for Supervised Machine Learning: From Linear Models to Deep Learning.

In *INFORMS Tutorials in Operations Research*, chapter 5, pages 89–114. Institute for Operations Research and the Management Sciences (INFORMS), 2017.