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What can be improved?

E[f(wg) — f] = O (%)

stochastic better
gradient rate

better
constant
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Two-dimensional schematic of methods
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2D schematic: Noise reduction methods

stochastic batch
gradient gradient
@ >
=3 >

noise reduction
e dynamic sampling
e gradient aggregation

e iterate averaging
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2D schematic: Second-order methods
stochastic
gradient

e diagonal scaling

e natural gradient

e Gauss-Newton

e quasi-Newton
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Even more. ..

momentum

acceleration

(dual) coordinate descent

trust region / step normalization

exploring negative curvature

Yy vV vV VY VYV
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Outline

Noise Reduction Methods
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Idea #1: Dynamic sampling

We have seen
> fast initial improvement by SG
» long-term linear rate achieved by batch gradient

= accumulate increasingly accurate gradient information during optimization.
But at what rate?

> too slow: won’t achieve linear convergence

> too fast: loss of optimal work complexity
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Geometric decrease

Correct balance achieved by decreasing noise at a geometric rate.

Theorem 3

Suppose f is c-strongly conver and L-smooth and that
Vilgr] < M¢*=Y for some M >0 and ¢ € (0,1).
Then, the SG method with a fized stepsize oo = 1/ L yields
E[f(wk) — f] S wp®~,

where

= maX{%,f(wo)—f*}

and p:= max{l— %,C} <1

Effectively ties rate of noise reduction with convergence rate of optimization.

I I
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Geometric decrease

Proof.

The now-familiar inequality

Exlf(wi1)] — f(wi) < —al|Vf(wi)l13 + 20 LEg[l|gx]I3],

strong convexity, and the stepsize choice lead to

Elf (i) = £ < (1= £) Elfun) = ] + 5 ¢* .

> Exactly as for batch gradient (in expectation) except for the last term.

» An inductive argument completes the proof.
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Practical geometric decrease (unlimited samples)

How can geometric decrease of the variance be achieved in practice?

1
gk = —— Z Vfi(wg) with [Si|=[7F"1] for 7> 1,
ISkl E5,
since, for all i € Sy,
ViV fi(w _
vilan] < PE] < e,

But is it too fast? What about work complexity?

c \—1
same as SG as long as 7 € (1, (1 - i) ] .

I I
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Ilustration

Figure: SG run with a fixed stepsize (left) vs. dynamic SG with fixed stepsize (right)
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Additional considerations

In practice, choosing 7 is a challenge.
» What about an adaptive technique?
» Guarantee descent in expectation

» Methods exist, but need geometric sample size increase as backup
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Idea #2: Gradient aggregation

“I’'m minimizing a finite sum and am willing to store previous gradient(s).”
1 n
Fw) =~ > filw).
i=1

Idea: reuse and/or revise previous gradient information in storage.
» SVRG: store full gradient, correct sequence of steps based on perceived bias
> SAGA: store elements of full gradient, revise as optimization proceeds

» SARAH: stochastic recursive gradient method
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Stochastic variance reduced gradient (SVRG) method

At wy, =: wy,1, compute a batch gradient:

V f1(wy)

V f2(wy,)

V f3(wy)

V fa(wy)

V f5(wi;)

then step

gk,1 < VEF(wy)

Wk,2 < Wk,1 — QGk,1
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Stochastic variance reduced gradient (SVRG) method

Now, iteratively, choose an index randomly and correct bias:

V f1(wy)

V fa(wy)

V f3(wg)

V fa(wg,2)

V f5(wr)

then step

9k,2 < VF(wy) = V fa(wy) + V fa(wg,2)

Wk,3 < Wk,2 — AJk,2
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Conclusion

Stochastic variance reduced gradient (SVRG) method

Now, iteratively, choose an index randomly and correct bias:

V f1(wy)

V fa(wy,3)

V f3(wg)

V fa(wy)

V f5(wr)

then step

9k,3 < VF(wy) — V fa(wy) + V fa(wg,3)

Wk, 4 < Wk,3 — AJk,3
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Stochastic variance reduced gradient (SVRG) method

Each gi ; is an unbiased estimate of VF(wy, ;)!

Algorithm SVRG
1: Choose an initial iterate wy € R, stepsize a > 0, and positive integer m.
2: for k=1,2,... do
3: Compute the batch gradient VF(wy).

4: Initialize wy 1 < wy.

5: forj=1,...,mdo

6: Chose ¢ uniformly from {1,...,n}.

7 Set gi,j < Vfi(wk,;) — (Vfi(we) = VF(wg)).

8: Set Wk, j4+1 ¢ Wk,j — QGk j-

9: end for

10: Option (a): Set wr+1 = Wm+1

11: Option (b) Set Wgy1 = % Z;n:1 ’lZIj+1

12: Option (¢): Choose j uniformly from {1,...,m} and set wy41 = Wj41.

13: end for

If f is c-strongly convex and L-smooth, then options (b) and (c) are linearly
convergent for certain (o, m)

I I
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Stochastic average gradient (SAGA) method

At wi, compute a batch gradient:

V fi(w1)

V fa(w1)

V f3(w1)

V fa(w1)

V f5(w1)

then step

g1 < VF(wl)

w2 < w1 — agi
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Stochastic average gradient (SAGA) method

Now, iteratively, choose an index randomly and revise table entry:

V fi(w1)

V fa(w1)

V f3(w1)

V fa(w2)

V f5(w1)

g2 < new entry — old entry + average of entries (before replacement)

then step

w3 < w2 — Qg2
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Stochastic average gradient (SAGA) method

Now, iteratively, choose an index randomly and revise table entry:

V fi(w1)

V f2(w3)

V f3(w1)

V fa(w2)

V f5(w1)

g3 < new entry — old entry + average of entries (before replacement)

then step

Wy £ W3 — Qg3

Optimization Methods for Large-Scale Machine Learning

42 of 59




GD and SG GD vs. SG Beyond SG Noise Reduction Methods Second-Order Methods Conclusion

Stochastic average gradient (SAGA) method

Each g is an unbiased estimate of VF (wg)!

Algorithm SAGA

. Choose an initial iterate wi € R4 and stepsize a > 0.
:fori=1,...,ndo
Compute V f;(w1).
Store V f; (w[l]) «~— Vfi (wl)
end for
: fork=1,2,... do
Choose j uniformly in {1,...,n}.
Compute V f; (wg).
Set g« Vfj(wi) — Vf5(wp)) + 2 0V fi(wpy)).
10: Store ij (w[]]) — ij (wk)
11: Set w1 ¢ Wi — agk.
12: end for

© ® N> TR wh

If f is c-strongly convex and L-smooth, then linearly convergent for certain o
> storage of gradient vectors reasonable in some applications
» with access to feature vectors, need only store n scalars

I I
Optimization Methods for Large-Scale Machine Learning 43 of 59




GD and SG GD vs. SG Beyond SG Noise Reduction Methods Second-Order Methods Conclusion

Idea #3: Iterative averaging

Averages of SG iterates are less noisy:

Wi41 < Wi — Qg
k+1
E w; (in practice: running average)
=1

W41 < Pl
Unfortunately, no better theoretically when oy = O(1/k), but

> long steps (say, ap, = O(1/Vk)) and averaging

> lead to a better sublinear rate (like a second-order method?)
See also

> mirror descent

» primal-dual averaging

I I
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Conclusion

Idea #3: Iterative averaging
Averages of SG iterates are less noisy:
Wk+1 $~ Wk — Ok Gk

k+1
Z wj (in practice: running average)

0.5

Figure: SG run with O(1/Vk) stepsizes (left) vs. sequence of averages (right)
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Outline

Second-Order Methods
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Two-dimensional schematic of methods

stochastic batch
gradient gradient
- — = > /)
noise reduction ,/
stochastic batch
Newton Newton

I
Optimization Methods for Large-Scale Machine Learning 46 of 59




GD and SG GD vs. SG Beyond SG Noise Reduction Methods Second-Order Methods Conclusion

2D schematic: Second-order methods
stochastic
gradient

e diagonal scaling

e natural gradient

e Gauss-Newton

e quasi-Newton

. © Hessian-free Newton
stochastic

Newton
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Ideal: Scale invariance

Neither SG nor batch gradient are invariant to linear transformations!

néi]éld f(w) = Wit — wi — o,V f(wyg)
mind f(Bw) =  Wg41 Wy — ap BV f(Bwyg) (for given B > 0)
wER

Scaling latter by B and defining {wy} = {Bwy} yields
Why1 = wy, — ap B2V f(wy,)

> Algorithm is clearly affected by choice of B

> Surely, some choices may be better than others (in general?)

I I
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Newton scaling

Consider the function below and suppose that wi = (0, 3):

8 8

7 i

6 8

5 5

4 4

3 3

2 2

1 1

0 0
-1 -1 \/,/
25 0 2 4 6 8 25 0 2 4 [ 8

W41 < Wk + S, where sz(wk)sk = -V f(wk)
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Newton scaling

Batch gradient step —ay, V f(wy) ignores curvature of the function:

= 0 @

oW

. e

-2 0 2 4 6 8

W41 < Wk + S, where sz(wk)sk = -V f(wk)
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Newton scaling

Newton scaling (B = (Vf(wg))~'/2): gradient step moves to the minimizer:

= 0 @

oW

. e

-2 0 2 4 6 8

W41 < Wk + S, where sz(wk)sk = -V f(wk)
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Second-Order Methods

Conclusion

Newton scaling

...corresponds to minimizing a quadratic model of f in the original space:

8 8
7 7
6 6
5 5
4 4
3 % 3
2 2
1 1
0 0
- \ -1 x//
23 [i 2 4 6 8 * 0 2 4 6 8
Why1 < Wi + apsy where V2 f(wy)sy = —Vf(wy)
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Deterministic case to stochastic case

What is known about Newton’s method for deterministic optimization?

> local rescaling based on inverse Hessian information

> locally quadratically convergent near a strong minimizer

> global convergence rate better than gradient method (when regularized)
However, it is way too expensive in our case.

> But all is not lost: scaling is viable.

» Wide variety of scaling techniques improve performance.

» Our convergence theory for SG still holds with B-scaling.

v

...could hope to remove condition number (L/c) from convergence rate!

v

Added costs can be minimal when coupled with noise reduction.
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Conclusion

Idea #1: Inexact Hessian-free Newton

Compute Newton-like step

V2f5£1 (wi)sk = =V fsa (wi)

mini-batch size for Hessian =: |SH| < |S{| := mini-batch size for gradient
cost for mini-batch gradient: geost
use CG and terminate early: max g4 iterations

in CG, cost for each Hessian-vector product: factor X gcost

Yy vV VvV VYV

choose mawcy x factor ~ small constant so total per-iteration cost:
mazcg X factor X geost = O(geost)

> convergence guarantees for |SH | = |S{| = n are well-known
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Idea #2: (Generalized) Gauss-Newton

Classical approach for nonlinear least squares, linearize inside of loss/cost:

Fw; &) = 3llh(ze; w) — yell3
~ Lh(ze; wi) + Jn(wi; €)(w — wi) — yell3

Leads to Gauss-Newton approximation for second-order terms:
1
Gsp (wy; &f1) = @Jh(wak,i)T‘]h(wk?fk,i)
k

Can be generalized for other (convex) losses:

~ 1
GsH (wi; &) = WJh(wk;fk,i)T Hy(wg; ki) In(wi; ki)
3 —_—
RZ
"~ On?

> costs similar as for inexact Newton
> ...but scaling matrices are always positive (semi)definite

> see also matural gradient, invariant to more than just linear transformations
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Idea #3: (Limited memory) quasi-Newton

Only approzimate second-order information with gradient displacements:

A

Tp+41 Ti /

Secant equation Hpvy = si to match gradient of f at wy, where

Sk = W41 — wg and vy = V f(wig1) — Vf(wg)
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Deterministic case to stochastic case

Standard update for inverse Hessian (wy41 < wi — o Hygy) is BEGS:

T
T T T
VS VS S8
P e i T e
53, Vk Sp, Vk Sp, Vk

What is known about quasi-Newton methods for deterministic optimization?

> local rescaling based on iterate/gradient displacements

> strongly convex function = positive definite (p.d.) matrices

> only first-order derivatives, no linear system solves

> locally superlinearly convergent near a strong minimizer
Extended to stochastic case? How?

> Noisy gradient estimates = challenge to maintain p.d.

» Correlation between gradient and Hessian estimates

> Overwriting updates = poor scaling that plagues!
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Optimization Methods for Large-Scale Machine Learning 54 of 59




GD and SG GD vs. SG Beyond SG Noise Reduction Methods Second-Order Methods Conclusion

Proposed methods

v

gradient displacements using same sample:

vg := Vfs, (wrt1) — Vs, (wk)

(requires two stochastic gradients per iteration)

> gradient displacement replaced by action on subsampled Hessian:

v 1= V2f$£1 (wi)(Wr+1 — wg)

v

decouple iteration and Hessian update to amortize added cost

v

limited memory approximations (e.g., L-BFGS) with per-iteration cost 4md
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Idea #4: Diagonal scaling

Restrict added costs through only diagonal scaling:
W41 ¢ wi — g Dpgp

Ideas:
> ch_l ~ diag(Hessian (approximation))
> D, Tx diag(Gauss-Newton approximation)
> Dk_l ~ running average/sum of gradient components
Last approach can be motivated by minimizing regret.
» RMSProp
ADAGRAD
ADAM
Batch normalization

>
>
>
» TRish
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Optimization Methods for Large-Scale Machine Learning 56 of 59




GD and SG GD vs. SG Beyond SG Noise Reduction Methods Second-Order Methods Conclusion

Outline

Conclusion
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Why should we care?

Mathematical optimization is one of the foundations of machine learning.
» Understanding machine learning requires understanding optimization!

> ...after all, the effectiveness of that model that you trained depends greatly
on the optimization algorithm that produced it.

Why is optimization for machine learning difficult?
» We’re using randomized algorithms to “solve” an unknown problem

> ...and somehow it can be argued that’s the best thing to do!
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