Optimization Methods for Large-Scale Machine Learning

Frank E. Curtis, Lehigh University

presented at

East Coast Optimization Meeting George Mason University

Fairfax, Virginia

April 2, 2021

Optimization Methods for Large-Scale Machine Learning

References

- * Léon Bottou, Frank E. Curtis, and Jorge Nocedal.
 Optimization Methods for Large-Scale Machine Learning. SIAM Review, 60(2):223-311, 2018.
- * Frank E. Curtis and Katya Scheinberg.

Optimization Methods for Supervised Machine Learning: From Linear Models to Deep Learning.

In *INFORMS Tutorials in Operations Research*, chapter 5, pages 89–114. Institute for Operations Research and the Management Sciences (INFORMS), 2017.

Motivating questions

- How do optimization problems arise in machine learning applications, and what makes them challenging?
- ▶ What have been the most successful optimization methods for large-scale machine learning, and why?
- ▶ What recent advances have been made in the design of algorithms, and what are open questions in this research area?

Outline

GD and SG

GD vs. SG

Beyond SG

Noise Reduction Methods

Second-Order Methods

Conclusion

Optimization Methods for Large-Scale Machine Learning

Outline

GD and SG

GD vs. SG

Beyond SG

Noise Reduction Methods

Second-Order Methods

Conclusion

Optimization Methods for Large-Scale Machine Learning

Learning problems and (surrogate) optimization problems

Learn a prediction function $h: \mathcal{X} \to \mathcal{Y}$ to solve

$$\max_{h \in \mathcal{H}} \int_{\mathcal{X} \times \mathcal{Y}} \mathbbm{1}[h(x) \approx y] dP(x, y)$$

Various meanings for $h(x) \approx y$ depending on the goal:

- Binary classification, with $y \in \{-1, +1\}$: $y \cdot h(x) > 0$.
- Regression, with $y \in \mathbb{R}^{n_y}$: $||h(x) y|| \le \delta$.

Parameterizing h by $w \in \mathbb{R}^d$, we aim to solve

$$\max_{w \in \mathbb{R}^d} \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}[h(w; x) \approx y] dP(x, y)$$

Now, common practice is to replace the indicator with a smooth loss...

Stochastic optimization

Over a parameter vector $w \in \mathbb{R}^d$ and given

 $\ell(\cdot;y)\circ h(w;x) \ \ ({\rm loss\ w.r.t.\ ``true\ label''\ o\ prediction\ w.r.t.\ ``features''}),$ consider the unconstrained optimization problem

$$\min_{w \in \mathbb{R}^d} f(w), \text{ where } f(w) = \mathbb{E}_{(x,y)}[\ell(h(w;x),y)].$$

Given training set $\{(x_i, y_i)\}_{i=1}^n$, approximate problem given by

$$\min_{w \in \mathbb{R}^d} f_n(w), \text{ where } f_n(w) = \frac{1}{n} \sum_{i=1}^n \ell(h(w; x_i), y_i).$$

Text classification

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \log(1 + \exp(-(w^T x_i) y_i)) + \frac{\lambda}{2} \|w\|_2^2$$

Image / speech recognition

444444

What pixel combinations represent the number 4?

What sounds are these? ("Here comes the sun" - The Beatles)

Deep neural networks

$$h(w; x) = a_l(W_l \dots (a_2(W_2(a_1(W_1x + \omega_1)) + \omega_2)) \dots)$$

Figure: Illustration of a DNN

Tradeoffs of large-scale learning

Bottou, Bousquet (2008) and Bottou (2010)

Notice that we went from our true problem

$$\max_{h \in \mathcal{H}} \int_{\mathcal{X} \times \mathcal{Y}} \mathbbm{1}[h(x) \approx y] dP(x, y)$$

to say that we'll find our solution $h \equiv h(w; \cdot)$ by (approximately) solving

$$\min_{w \in \mathbb{R}^d} \ \frac{1}{n} \sum_{i=1}^n \ell(h(w; x_i), y_i).$$

Three sources of error:

- approximation
- ▶ estimation
- optimization

Approximation error

Choice of prediction function family \mathcal{H} has important implications; e.g.,

$$\mathcal{H}_C := \{ h \in \mathcal{H} : \Omega(h) \le C \}.$$

Figure: Illustration of C and training time vs. misclassification rate

Problems of interest

Let's focus on the expected loss/risk problem

$$\min_{w \in \mathbb{R}^d} f(w), \text{ where } f(w) = \mathbb{E}_{(x,y)}[\ell(h(w;x),y)]$$

and the empirical loss/risk problem

$$\min_{w \in \mathbb{R}^d} f_n(w), \text{ where } f_n(w) = \frac{1}{n} \sum_{i=1}^n \ell(h(w; x_i), y_i).$$

For this talk, let's assume

- \blacktriangleright f is continuously differentiable, bounded below, and potentially nonconvex;
- ▶ ∇f is *L*-Lipschitz continuous, i.e., $\|\nabla f(w) \nabla f(\overline{w})\|_2 \le L \|w \overline{w}\|_2$.

Aim: Find a stationary point, i.e., w with $\nabla f(w) = 0$.

Algorithm GD : Gradient Descent

- 1: choose an initial point $w_0 \in \mathbb{R}^n$ and stepsize $\alpha > 0$
- 2: for $k \in \{0, 1, 2, ...\}$ do
- 3: set $w_{k+1} \leftarrow w_k \alpha \nabla f(w_k)$
- 4: end for

$$\int f(w_k)$$

 $ec{w_k}$

Aim: Find a stationary point, i.e., w with $\nabla f(w) = 0$.

Algorithm GD : Gradient Descent

- 1: choose an initial point $w_0 \in \mathbb{R}^n$ and stepsize $\alpha > 0$
- 2: for $k \in \{0, 1, 2, ...\}$ do
- 3: set $w_{k+1} \leftarrow w_k \alpha \nabla f(w_k)$
- 4: end for

Optimization Methods for Large-Scale Machine Learning

Aim: Find a stationary point, i.e., w with $\nabla f(w) = 0$.

Algorithm GD : Gradient Descent

- 1: choose an initial point $w_0 \in \mathbb{R}^n$ and stepsize $\alpha > 0$
- 2: for $k \in \{0, 1, 2, ...\}$ do
- 3: set $w_{k+1} \leftarrow w_k \alpha \nabla f(w_k)$
- 4: end for

$$f(w_k) + \nabla f(w_k)^T (w - w_k) + \frac{1}{2}L ||w - w_k||_2^2$$

$$\overrightarrow{w_k}$$

Optimization Methods for Large-Scale Machine Learning

Aim: Find a stationary point, i.e., w with $\nabla f(w) = 0$.

Algorithm GD : Gradient Descent

- 1: choose an initial point $w_0 \in \mathbb{R}^n$ and stepsize $\alpha > 0$
- 2: for $k \in \{0, 1, 2, ...\}$ do
- 3: set $w_{k+1} \leftarrow w_k \alpha \nabla f(w_k)$
- 4: end for

GD theory

Theorem GD

If
$$\alpha \in (0, 1/L]$$
, then $\sum_{k=0}^{\infty} \|\nabla f(w_k)\|_2^2 < \infty$, which implies $\{\nabla f(w_k)\} \to 0$.
If, in addition, f is c -strongly convex, then for all $k \ge 1$:
 $f(w_k) - f_* \le (1 - \alpha c)^k (f(x_0) - f_*)$.

Proof.

$$f(w_{k+1}) \leq f(w_k) + \nabla f(w_k)^T (w_{k+1} - w_k) + \frac{1}{2}L \|w_{k+1} - w_k\|_2^2$$

... (due to stepsize choice)
$$\leq f(w_k) - \frac{1}{2}\alpha \|\nabla f(w_k)\|_2^2$$

$$\leq f(w_k) - \alpha c(f(w_k) - f_*).$$

$$\implies f(w_{k+1}) - f_* \leq (1 - \alpha c)(f(w_k) - f_*).$$

GD illustration

Figure: GD with fixed stepsize

Stochastic gradient method (SG)

Invented by Herbert Robbins and Sutton Monro in 1951.

Sutton Monro, former Lehigh faculty member

Stochastic gradient descent

Approximate gradient only; e.g., random i_k so $\mathbb{E}[\nabla_w \ell(h(w; x_{i_k}), y_{i_k})|w] = \nabla f(w)$.

Algorithm SG : Stochastic Gradient

1: choose an initial point $w_0 \in \mathbb{R}^n$ and stepsizes $\{\alpha_k\} > 0$ 2: for $k \in \{0, 1, 2, ...\}$ do 3: set $w_{k+1} \leftarrow w_k - \alpha_k g_k$, where $g_k \approx \nabla f(w_k)$ 4: end for

Not a descent method!

... but can guarantee eventual descent in expectation (with $\mathbb{E}_k[g_k] = \nabla f(w_k)$):

$$f(w_{k+1}) \leq f(w_k) + \nabla f(w_k)^T (w_{k+1} - w_k) + \frac{1}{2}L \|w_{k+1} - w_k\|_2^2$$

= $f(w_k) - \alpha_k \nabla f(w_k)^T g_k + \frac{1}{2}\alpha_k^2 L \|g_k\|_2^2$
 $\implies \mathbb{E}_k[f(w_{k+1})] \leq f(w_k) - \alpha_k \|\nabla f(w_k)\|_2^2 + \frac{1}{2}\alpha_k^2 L \mathbb{E}_k[\|g_k\|_2^2].$

Markov process: w_{k+1} depends only on w_k and random choice at iteration k.

SG theory

Theorem SG

If $\mathbb{E}_{k}[\|g_{k}\|_{2}^{2}] \leq M + \|\nabla f(w_{k})\|_{2}^{2}$, then:

$$\begin{aligned} \alpha_k &= \frac{1}{L} \qquad \implies \mathbb{E}\left[\frac{1}{k}\sum_{j=1}^k \|\nabla f(w_j)\|_2^2\right] \le M \\ \alpha_k &= \mathcal{O}\left(\frac{1}{k}\right) \qquad \implies \mathbb{E}\left[\sum_{j=1}^k \alpha_j \|\nabla f(w_j)\|_2^2\right] < \infty. \end{aligned}$$

If, in addition, f is c-strongly convex, then:

$$\begin{aligned} \alpha_k &= \frac{1}{L} \qquad \implies \mathbb{E}[f(w_k) - f_*] \le \mathcal{O}\left(\frac{(\alpha L)(M/c)}{2}\right) \\ \alpha_k &= \mathcal{O}\left(\frac{1}{k}\right) \qquad \implies \mathbb{E}[f(w_k) - f_*] = \mathcal{O}\left(\frac{(L/c)(M/c)}{k}\right) \end{aligned}$$

(*Assumed unbiased gradient estimates; see paper for more generality.)

Why $\mathcal{O}(1/k)$?

Mathematically:

$$\sum_{k=1}^{\infty} \alpha_k = \infty$$
 while $\sum_{k=1}^{\infty} \alpha_k^2 < \infty$

Graphically (sequential version of constant stepsize result):

SG illustration

Figure: SG with fixed stepsize (left) vs. diminishing stepsizes (right)

Outline

GD and SG

GD vs. SG

Beyond SG

Noise Reduction Methods

Second-Order Methods

Conclusion

Why SG over GD for large-scale machine learning?

GD:
$$\mathbb{E}[f_n(w_k) - f_{n,*}] = \mathcal{O}(\rho^k)$$
 linear convergence
SG: $\mathbb{E}[f_n(w_k) - f_{n,*}] = \mathcal{O}(1/k)$ sublinear convergence

So why SG?

Motivation	Explanation
Intuitive	data "redundancy"
Empirical	SG vs. L-BFGS with batch gradient (below)
Theoretical	$\mathbb{E}[f_n(w_k) - f_{n,*}] = \mathcal{O}(1/k) \text{ and } \mathbb{E}[f(w_k) - f_*] = \mathcal{O}(1/k)$

Work complexity

Time, not data, as limiting factor; Bottou, Bousquet (2008) and Bottou (2010).

			Time		Time for
	Convergence rate		per iteration		$\epsilon\text{-}\mathrm{optimality}$
GD:	$\mathbb{E}[f_n(w_k) - f_{n,*}] = \mathcal{O}(\rho^k)$	+	$\mathcal{O}(n)$	\Rightarrow	$n\log(1/\epsilon)$
SG:	$\mathbb{E}[f_n(w_k) - f_{n,*}] = \mathcal{O}(1/k)$	+	$\mathcal{O}(1)$	\Rightarrow	$1/\epsilon$

Considering total (estimation + optimization) error as

$$\mathcal{E} = \mathbb{E}[f(w^n) - f(w^*)] + \mathbb{E}[f(\tilde{w}^n) - f(w^n)] \sim \frac{1}{n} + \epsilon$$

and a time budget \mathcal{T} , one finds:

▶ SG: Process as many samples as possible $(n \sim T)$, leading to

$$\mathcal{E} \sim \frac{1}{\mathcal{T}}.$$

• GD: With $n \sim \mathcal{T}/\log(1/\epsilon)$, minimizing \mathcal{E} yields $\epsilon \sim 1/\mathcal{T}$ and

$$\mathcal{E} \sim \frac{\log(\mathcal{T})}{\mathcal{T}} + \frac{1}{\mathcal{T}}.$$

Outline

GD and SG

GD vs. SG

Beyond SG

Noise Reduction Methods

Second-Order Methods

Conclusion

Optimization Methods for Large-Scale Machine Learning

End of the story?

SG is great! Let's keep proving how great it is!

- ▶ SG is "stable with respect to inputs"
- SG avoids "steep minima"
- SG avoids "saddle points"
- ▶ ... (many more)

No, we should want more...

- ▶ SG requires a lot of "hyperparameter" tuning
- Sublinear convergence is not satisfactory
- ▶ ... "linearly" convergent method eventually wins
- ▶ ... with higher budget, faster computation, parallel?, distributed?

Also, any "gradient"-based method is not scale invariant.