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Motivating questions

I How do optimization problems arise in machine learning applications, and
what makes them challenging?

I What have been the most successful optimization methods for large-scale
machine learning, and why?

I What recent advances have been made in the design of algorithms, and what
are open questions in this research area?
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Learning problems and (surrogate) optimization problems

Learn a prediction function h : X → Y to solve

max
h∈H

∫
X×Y

1[h(x) ≈ y]dP (x, y)

Various meanings for h(x) ≈ y depending on the goal:

I Binary classification, with y ∈ {−1,+1}: y · h(x) > 0.

I Regression, with y ∈ Rny : ‖h(x)− y‖ ≤ δ.
Parameterizing h by w ∈ Rd, we aim to solve

max
w∈Rd

∫
X×Y

1[h(w;x) ≈ y]dP (x, y)

Now, common practice is to replace the indicator with a smooth loss. . .
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Stochastic optimization

Over a parameter vector w ∈ Rd and given

`(·; y) ◦ h(w;x) (loss w.r.t. “true label” ◦ prediction w.r.t. “features”),

consider the unconstrained optimization problem

min
w∈Rd

f(w), where f(w) = E(x,y)[`(h(w;x), y)].

Given training set {(xi, yi)}ni=1, approximate problem given by

min
w∈Rd

fn(w), where fn(w) =
1

n

n∑
i=1

`(h(w;xi), yi).
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Text classification
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Image / speech recognition

What pixel combinations represent the number 4?

What sounds are these? (“Here comes the sun” – The Beatles)
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Deep neural networks

h(w;x) = al(Wl . . . (a2(W2(a1(W1x+ ω1)) + ω2)) . . . )
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Figure: Illustration of a DNN
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Tradeoffs of large-scale learning

Bottou, Bousquet (2008) and Bottou (2010)

Notice that we went from our true problem

max
h∈H

∫
X×Y

1[h(x) ≈ y]dP (x, y)

to say that we’ll find our solution h ≡ h(w; ·) by (approximately) solving

min
w∈Rd

1

n

n∑
i=1

`(h(w;xi), yi).

Three sources of error:

I approximation

I estimation

I optimization
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Approximation error

Choice of prediction function family H has important implications; e.g.,

HC := {h ∈ H : Ω(h) ≤ C}.

C

misclassification rate

testing

training

training time

misclassification rate

testing

training

Figure: Illustration of C and training time vs. misclassification rate
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Problems of interest

Let’s focus on the expected loss/risk problem

min
w∈Rd

f(w), where f(w) = E(x,y)[`(h(w;x), y)]

and the empirical loss/risk problem

min
w∈Rd

fn(w), where fn(w) =
1

n

n∑
i=1

`(h(w;xi), yi).

For this talk, let’s assume

I f is continuously differentiable, bounded below, and potentially nonconvex;

I ∇f is L-Lipschitz continuous, i.e., ‖∇f(w)−∇f(w)‖2 ≤ L‖w − w‖2.
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Gradient descent
Aim: Find a stationary point, i.e., w with ∇f(w) = 0.

Algorithm GD : Gradient Descent

1: choose an initial point w0 ∈ Rn and stepsize α > 0
2: for k ∈ {0, 1, 2, . . . } do
3: set wk+1 ← wk − α∇f(wk)
4: end for

wk

f(wk)

f(wk) +∇f(wk)T (w − wk) + 1
2
L‖w − wk‖

2
2

f(wk) +∇f(wk)T (w − wk) + 1
2
c‖w − wk‖

2
2

f(w)? f(w)?
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GD theory

Theorem GD

If α ∈ (0, 1/L], then
∞∑
k=0

‖∇f(wk)‖22 <∞, which implies {∇f(wk)} → 0.

If, in addition, f is c-strongly convex, then for all k ≥ 1:

f(wk)− f∗ ≤ (1− αc)k(f(x0)− f∗).

Proof.

f(wk+1) ≤ f(wk) +∇f(wk)T (wk+1 − wk) + 1
2
L‖wk+1 − wk‖22

· · · (due to stepsize choice)

≤ f(wk)− 1
2
α‖∇f(wk)‖22

≤ f(wk)− αc(f(wk)− f∗).

=⇒ f(wk+1)− f∗ ≤ (1− αc)(f(wk)− f∗).
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GD illustration

Figure: GD with fixed stepsize
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Stochastic gradient method (SG)

Invented by Herbert Robbins and Sutton Monro in 1951.

Sutton Monro, former Lehigh faculty member
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Stochastic gradient descent

Approximate gradient only; e.g., random ik so E[∇w`(h(w;xik ), yik )|w] = ∇f(w).

Algorithm SG : Stochastic Gradient

1: choose an initial point w0 ∈ Rn and stepsizes {αk} > 0
2: for k ∈ {0, 1, 2, . . . } do
3: set wk+1 ← wk − αkgk, where gk ≈ ∇f(wk)
4: end for

Not a descent method!
. . . but can guarantee eventual descent in expectation (with Ek[gk] = ∇f(wk)):

f(wk+1) ≤ f(wk) +∇f(wk)T (wk+1 − wk) + 1
2
L‖wk+1 − wk‖22

= f(wk)− αk∇f(wk)T gk + 1
2
α2
kL‖gk‖

2
2

=⇒ Ek[f(wk+1)] ≤ f(wk)− αk‖∇f(wk)‖22 + 1
2
α2
kLEk[‖gk‖22].

Markov process: wk+1 depends only on wk and random choice at iteration k.
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SG theory

Theorem SG

If Ek[‖gk‖22] ≤M + ‖∇f(wk)‖22, then:

αk =
1

L
=⇒ E

 1

k

k∑
j=1

‖∇f(wj)‖22

 ≤M
αk = O

(
1

k

)
=⇒ E

 k∑
j=1

αj‖∇f(wj)‖22

 <∞.
If, in addition, f is c-strongly convex, then:

αk =
1

L
=⇒ E[f(wk)− f∗] ≤ O

(
(αL)(M/c)

2

)
αk = O

(
1

k

)
=⇒ E[f(wk)− f∗] = O

(
(L/c)(M/c)

k

)
.

(*Assumed unbiased gradient estimates; see paper for more generality.)
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Why O(1/k)?

Mathematically:
∞∑
k=1

αk =∞ while
∞∑
k=1

α2
k <∞

Graphically (sequential version of constant stepsize result):
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SG illustration

Figure: SG with fixed stepsize (left) vs. diminishing stepsizes (right)
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Why SG over GD for large-scale machine learning?

GD: E[fn(wk)− fn,∗] = O(ρk) linear convergence

SG: E[fn(wk)− fn,∗] = O(1/k) sublinear convergence

So why SG?

Motivation Explanation

Intuitive data “redundancy”

Empirical SG vs. L-BFGS with batch gradient (below)

Theoretical E[fn(wk)− fn,∗] = O(1/k) and E[f(wk)− f∗] = O(1/k)
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Work complexity
Time, not data, as limiting factor; Bottou, Bousquet (2008) and Bottou (2010).

Time Time for

Convergence rate per iteration ε-optimality

GD: E[fn(wk)− fn,∗] = O(ρk) + O(n) =⇒ n log(1/ε)

SG: E[fn(wk)− fn,∗] = O(1/k) + O(1) =⇒ 1/ε

Considering total (estimation + optimization) error as

E = E[f(wn)− f(w∗)] + E[f(w̃n)− f(wn)] ∼ 1
n

+ ε

and a time budget T , one finds:

I SG: Process as many samples as possible (n ∼ T ), leading to

E ∼
1

T
.

I GD: With n ∼ T / log(1/ε), minimizing E yields ε ∼ 1/T and

E ∼
log(T )

T
+

1

T
.
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End of the story?

SG is great! Let’s keep proving how great it is!

I SG is “stable with respect to inputs”

I SG avoids “steep minima”

I SG avoids “saddle points”

I . . . (many more)

No, we should want more. . .

I SG requires a lot of “hyperparameter” tuning

I Sublinear convergence is not satisfactory

I . . . “linearly” convergent method eventually wins

I . . . with higher budget, faster computation, parallel?, distributed?

Also, any “gradient”-based method is not scale invariant.

Optimization Methods for Large-Scale Machine Learning 26 of 59


	GD and SG
	GD vs. SG
	Beyond SG

