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Motivating questions

» How do optimization problems arise in machine learning applications, and
what makes them challenging?

» What have been the most successful optimization methods for large-scale
machine learning, and why?

> What recent advances have been made in the design of algorithms, and what
are open questions in this research area?
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Learning problems and (surrogate) optimization problems

Learn a prediction function h : X — ) to solve

max /Xxy 1[h(z) = y]dP(z,y)

Various meanings for h(z) &~ y depending on the goal:
> Binary classification, with y € {—1,+1}: y - h(z) > 0.
> Regression, with y € R™v: ||h(z) — y|| < 4.
Parameterizing h by w € R%, we aim to solve
max / 1[h(w; x) = y]dP(z,y)
XXy

weRd

Now, common practice is to replace the indicator with a smooth loss. ..
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Stochastic optimization

Over a parameter vector w € R% and given
£(:;y) o h(w;z) (loss w.r.t. “true label” o prediction w.r.t. “features”),
consider the unconstrained optimization problem

féi@l f(w), where f(w) =E ) [¢(h(w;z),y)].

Given training set {(z;,y:)}}—,, approximate problem given by

uIJrél]l? fn(w), where fn(w)= Zé(h(w i), Yi)-
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Image / speech recognition

G444 b A% 4012345

What pixel combinations represent the number 47

What sounds are these? (“Here comes the sun” — The Beatles)
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Deep neural networks

h(w;z) = a;(W; ... (a2(Wa(ar(Wiz + w1)) +w2))...)
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Figure: Illustration of a DNN
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Tradeoffs of large-scale learning

Bottou, Bousquet (2008) and Bottou (2010)

Notice that we went from our true problem

mase /X 1) = 3P,

to say that we’ll find our solution h = h(wj;-) by (approximately) solving

n

1
min — L(h(w;4),Ys)-
weR? m o7

Three sources of error:
> approximation
> estimation

> optimization

I I
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Approximation error

Choice of prediction function family H has important implications; e.g.,

He ={heH:Qh) < C}.

misclassification rate misclassification rate
testing testing
training training
C training time

Figure: Illustration of C' and training time vs. misclassification rate
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Problems of interest

Let’s focus on the expected loss/risk problem

min, f(w), where f(w) =E(y) [(h(w;), )]

and the empirical loss/risk problem

mﬁl fn(w), where fn(w)= Zé(h(w i), Yi)-

we

For this talk, let’s assume
> f is continuously differentiable, bounded below, and potentially nonconvex;
» Vf is L-Lipschitz continuous, i.e., |V f(w) — V f(w)|2 < L||lw — @||2.

I I
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Gradient descent
Aim: Find a stationary point, i.e., w with V f(w) = 0.

Algorithm GD : Gradient Descent

1: choose an initial point wg € R™ and stepsize o > 0
2: for k€ {0,1,2,...} do

3: set wry1 — wi — aV f(wyg)

4: end for

f(wy)

v

Wi
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GD theory

Theorem GD

(oo}

If a € (0,1/L), then > [V f(wy)||3 < oo, which implies {V f(wy)} — 0.
k=0

If, in addition, f is c-strongly convex, then for all k > 1:

Flwp) = fu < (1= ac)*(f(@o) — f+)-

Proof.

Fwrg1) < F(we) + VF(we) T (weg1 — wi) + 3 Ll|lwpt1 — will3
-+ (due to stepsize choice)
< fwg) — 30l VF(we)ll3
< flwr) — ac(f(wk) — f+).
= f(wit1) = f« < (1 = ac)(f(wk) = fx).

I I
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GD illustration

Figure: GD with fixed stepsize
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Stochastic gradient method (SG)

Invented by Herbert Robbins and Sutton Monro in 1951.

[
Sutton Monro, former Lehigh faculty member
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Stochastic gradient deseent

Approximate gradient only; e.g., random 45 so B[V l(h(w; s, ), y;,, )|w] = V f(w).

Algorithm SG : Stochastic Gradient
1: choose an initial point wo € R™ and stepsizes {ax} > 0
2: for k€ {0,1,2,...} do
3: set W41 < Wi — apgk, where g = V f(wy)
4: end for

Not a descent method!
...but can guarantee eventual descent in expectation (with Ex[gx] = V f(wy)):

Fwig1) < flwr) + VF(wr) T (g1 — wi) + 2 Lllwipr — w3

= f(wi) — apVf(we) g + 207 Llgkll3
= Ex[f(wiy1)] < flwr) — ar|VF(wi)ll3 + 50i LEx[l|gxI5]-

Markov process: wy41 depends only on wy and random choice at iteration k.

I I
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SG theory

Theorem SG
If Eglllgrll3] < M + ||V f(wg)||3, then:

e

= E

1
o = —
L

k
DoIVAw)I3| <M
j=1

k
=0(3) = B> alviwl| <o

Jj=1

If, in addition, f is c-strongly convex, then:

o= — Elf(wx) - ] <O (%)
=0(3) = Elftu) - -0 (HEH).

(*Assumed unbiased gradient estimates; see paper for more generality.)

I
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Why O(1/k)?
Mathematically:

oo (e o)
Zakzoo while Zai<oo
k=1 k=1

Graphically (sequential version of constant stepsize result):

o o/2

2a
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SG illustration

Figure: SG with fixed stepsize (left) vs. diminishing stepsizes (right)
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Why SG over GD for large-scale machine learning?

GD:  E[fn(wk) — fn,«] = O(p¥) linear convergence
SG:  E[fn(wk) — fn,«] = O(1/k)  sublinear convergence
So why SG?

Motivation | Explanation

Intuitive data “redundancy”
Empirical SG vs. L-BFGS with batch gradient (below)
Theoretical | E[fn(wg) — fn,«] = O(1/k) and E[f(wg) — f«] = O(1/k)

LBFGS

Empirical Risk

. ™~

15 25
Accessed Data Points

I
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Work complexity
Time, not data, as limiting factor; Bottou, Bousquet (2008) and Bottou (2010).

Time Time for
Convergence rate per iteration e-optimality
GD:  E[fn(wg) = fns] = 0"  + O(n) = nlog(1/e)
8G:  E[fn(wi) — fnx] =O(1/k) + o) = 1/e

Considering total (estimation + optimization) error as
£ =E[f(w") = f(w*)] +E[f(@") = f(w")] ~ ; +e

and a time budget 7, one finds:
» SG: Process as many samples as possible (n ~ 7)), leading to
1
En~ —.
T

» GD: With n ~ 7 /log(1/€), minimizing & yields e ~ 1/7 and

log(T) 1
T + T

&

I I
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Outline

Beyond SG
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End of the story?

SG is great! Let’s keep proving how great it is!
» SG is “stable with respect to inputs”
> SG avoids “steep minima”

» SG avoids “saddle points”
> ...(many more)

No, we should want more. ..

v

SG requires a lot of “hyperparameter” tuning

v

Sublinear convergence is not satisfactory
> ... “linearly” convergent method eventually wins
> ... with higher budget, faster computation, parallel?, distributed?

Also, any “gradient”-based method is not scale invariant.
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