Part 2: Decentralized optimization

Decentralized optimization

Consider an undirected, connected graph $G=(V, E)$. Each node $i \in E$ has an objective function f_{i}.

If node i uses only its local and adjacent information to compute, we call it local operation.

Decentralized optimization uses local operations to achieve a global optimization objective.

Why decentralized?

- The nature of certain multi-agent systems
- Avoid long-distance communication. Reduce contention.
- Reliability, privacy considerations

Decentralized ADMM

Consider: n agents minimize their joint sum:

$$
\operatorname{minimize} \sum_{i=1}^{n} f_{i}(x)
$$

With y_{e} for each undirected edge $e=\{i, j\} \in E$ we obtain the ADMM-ready form:

$$
\begin{array}{ll}
\underset{\substack{\left\{x_{i}\right\}_{i \in V} \\
\left\{y_{e}\right\}_{e \in E}}}{\operatorname{minimize}} & \sum_{i \in V} f_{i}\left(x_{i}\right) \\
\text { subject to } & \left\{\begin{array}{l}
x_{i}-y_{e}=0 \\
x_{j}-y_{e}=0
\end{array} \quad \forall e=\{i, j\} \in E .\right.
\end{array}
$$

We can simplify the ADMM into

$$
\begin{array}{ll}
x_{i}^{k+1}=\operatorname{prox}_{\left(\alpha\left|N_{i}\right|\right)^{-1} f_{i}}\left(v_{i}^{k}\right) & i \in V \\
\begin{cases}a_{i}^{k+1}=\frac{1}{\left|N_{i}\right|} \sum_{j \in N_{i}} x_{j}^{k+1} & i \in V \\
v_{i}^{k+1}=v_{i}^{k}+a_{i}^{k+1}-\frac{1}{2} a_{i}^{k}-\frac{1}{2} x_{i}^{k} & \end{cases}
\end{array}
$$

It uses only local computation and local communication (neighborhood allreduce).

We call this method Decentralized $A D M M$.

A broader class of methods based on local mixing

Average consensus

Goal: compute the average of decentralized vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$.
Let x_{i}^{k} be the k th iterate of node i. Set $x_{i}^{0}=a_{i}$. Common approach:

$$
x_{i}^{k+1}=w_{i i} x_{i}^{k}+\sum_{j \in N_{i}} w_{i j} x_{j}^{k}, \quad i=1, \ldots, n
$$

Local operations imply: $w_{i j} \neq 0$ only for $i=j$ and $(i, j) \in E$.
Using

$$
\mathbf{x}=\left[\begin{array}{c}
-x_{1}^{T}- \\
\vdots \\
-x_{n}^{T}-
\end{array}\right] \in \mathbb{R}^{n \times d}
$$

we get

$$
\mathbf{x}^{k}=W \mathbf{x}^{k-1}=\cdots=W^{k} \mathbf{x}^{0}
$$

To obtain

$$
\lim _{k \rightarrow \infty} W^{k} \mathbf{x}^{0}=\left[\begin{array}{c}
\vdots \\
\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{0} \\
\vdots
\end{array}\right]=\frac{1}{n} \mathbf{1 1} \mathbf{1}^{T} \mathbf{x}^{0}
$$

for any \mathbf{x}^{0}, we deduct

- $W \mathbf{1}=1$
- $\mathbf{1}^{T}=\mathbf{1}^{T} W$
- $\lambda_{\max }(W)=1$ and $1>\lambda_{2}(W) \geq \cdots \geq \lambda_{n}(W)>-1$.

Consensus minimization

Average consensus

$$
\underset{\mathbf{x}}{\operatorname{minimize}} \sum_{i=1}^{n} \frac{1}{2}\left\|x_{i}-a_{i}\right\|^{2}, \quad \text { subject to } x_{i}=x_{j}, \quad \forall \text { nodes } i, j \in V .
$$

Generalization to minimization

$$
\underset{\mathbf{x}}{\operatorname{minimize}} \sum_{i=1}^{n} f_{i}\left(x_{i}\right), \quad \text { subject to } x_{i}=x_{j}, \quad \forall \text { nodes } i, j \in V
$$

Penalty formulation

Recall property of W :

$$
W \mathbf{x}=\mathbf{x} \quad \Leftrightarrow \quad(I-W) \mathbf{x}=0 \quad \Leftrightarrow \quad x_{1}=\cdots=x_{n}
$$

A penalty (inexact) formulation:

$$
\begin{equation*}
\underset{\mathbf{x}}{\operatorname{minimize}} \sum_{i=1}^{n} h_{i}\left(x_{i}\right)+\frac{1}{2 \rho}\|\mathbf{x}\|_{I-W}^{2} . \tag{1}
\end{equation*}
$$

Applying gradient descent to (2) yields DGD ${ }^{1}$

$$
\mathbf{x}^{k+1}=W \mathbf{x}^{k}-\alpha \nabla h\left(\mathbf{x}^{k}\right)
$$

We call it adaptation-with-combination or AWC-DGD.

[^0]
Another penalty formulation

Assume $\min \left\{\lambda_{2}(W), \ldots, \lambda_{n}(W)\right\}>0$, i.e., $W \succ 0$. Consider

$$
\begin{equation*}
\underset{\mathbf{x}}{\operatorname{minimize}} \sum_{i=1}^{n} h_{i}\left(x_{i}\right)+\frac{1}{2 \rho}\|\mathbf{x}\|_{W^{-1}-I}^{2} . \tag{2}
\end{equation*}
$$

Apply variable-metric gradient descent

$$
\begin{aligned}
\mathbf{x}^{k+1} & =\mathbf{x}^{k}-\alpha W\left(\nabla h\left(\mathbf{x}^{k}\right)-\frac{1}{\alpha}\left(W^{-1}-I\right) \mathbf{x}^{k}\right) \\
& =W\left(\mathbf{x}^{k}-\alpha \nabla h\left(\mathbf{x}^{k}\right)\right)
\end{aligned}
$$

We call it adaptation-then-combination or ATC-DGD.

Constrained formulation

Consider

$$
\underset{\mathbf{x}}{\operatorname{minimize}} \sum_{i=1}^{n}\left(h_{i}\left(x_{i}\right)+g_{i}\left(x_{i}\right)\right), \quad \text { subject to }(I-W) \mathbf{x}=0 .
$$

Write

$$
h(\mathbf{x})=\sum_{i=1}^{n} h_{i}\left(x_{i}\right) \quad \text { and } \quad g(\mathbf{x})=\sum_{i=1}^{n} g_{i}\left(x_{i}\right)
$$

Both $h(\mathbf{x})$ and $g(\mathbf{x})$ are separable. But, $(I-W) \mathbf{x}=0$ is not.
How to derive methods based on multiplying by W ?

Operator splitting

Operator splitting

1. Formulate a problem into the form

$$
0 \in \boldsymbol{\chi}(x)+(x) \quad \text { or } \quad 0 \in \boldsymbol{\chi}(x)+(x)+(x)
$$

where $x,: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are (point- or set-valued) operators
2. Apply a splitting scheme to get \mathbb{Q} such that

- $z^{*}=\mathbb{Q} z^{*}$ recovers a solution x^{*}
- computing \mathbb{Q} is easy (by evaluating x, , separately)
- $z^{k+1} \leftarrow \mathbb{Q} z^{k}$ converges

Forward and backward operators

	Forward op.	Backward op. (Resolvent)
definition	$(I-\gamma x)$	$J_{\gamma x}=(I+\gamma x)^{-1}$
analogy	forward Euler	backward Euler
	grad descent	proximal mapping
example:	$\chi=\nabla f$ of $\mathrm{cvx} f \in C^{1}$	$x=\partial f$ of $\mathrm{cvx} f$
	yields $(I-\gamma \nabla f) ;$	yields prox ${ }_{\gamma f} ;$
example:	skew-symm A	projection to cvx set

Basic operator splitting schemes

$$
0 \in x x+x
$$

- forward-backward splitting (FBS) (Mercier'79) for $($ maximally monotone $)+(\text { cocoercive })^{2}$

$$
\mathbb{Q}=J_{\gamma x}(I-\gamma)
$$

- Douglas-Rachford splitting (DRS) (Lion-Mercier'79) for (maximally monotone) + (maximally monotone)

$$
\mathbb{Q}=\frac{1}{2} I+\frac{1}{2}\left(2 J_{\gamma \chi}-I\right)\left(2 J_{\gamma}-I\right)
$$

They generalize the proximal point method (PPM).

[^1]$$
0 \in x x+x+x
$$

- three-operator splitting (DYS) (Davis-Yin'15) for
(maximally monotone) + (maximally monotone $)+$ (cocoercive):

$$
\mathbb{Q}=I-J_{\gamma x}+J_{\gamma}\left(2 J_{\gamma x}-I+\gamma J_{\gamma x}\right)
$$

where $J_{x}:=(I+x)^{-1}$.

DYS generalizes FBS and DRS.

EXTRA Method

EXTRA

EXTRA 3 is the first method that uses a fixed stepsize and converges linearly if $\sum_{i=1}^{n} f(x)$ is strongly convex.

Iteration:

$$
\mathbf{x}^{k+1} \leftarrow W \mathbf{x}^{k}-\alpha \nabla f\left(\mathbf{x}^{k}\right)-\sum_{j=0}^{k-1} \frac{1}{2}(I-W) \mathbf{x}^{j}
$$

PG-EXTRA ${ }^{4}$

$$
\mathbf{x}^{k+1} \leftarrow \underbrace{(I+\alpha \partial g)^{-1}}_{\operatorname{prox}_{\alpha g}}\left(W \mathbf{x}^{k}-\alpha \nabla f\left(\mathbf{x}^{k}\right)-\sum_{j=0}^{k-1} \frac{1}{2}(I-W) \mathbf{x}^{j}\right)
$$

We can derive them from operator splitting.

[^2]
Saddle-point problem and splitting

Let

$$
U^{T} U=(I-W)
$$

So $U \mathbf{x}=0$ iff $(I-W) \mathbf{x}=0$.
With Lagrangian

$$
L(\mathbf{x} ; \mathbf{y})=f(\mathbf{x})+g(\mathbf{x})+\mathbf{y}^{T} U \mathbf{x}
$$

ignoring regularity conditions, we get

$$
\begin{aligned}
& \operatorname{minimize}_{\mathbf{x}} f(\mathbf{x})+g(\mathbf{x}) \\
& \text { subject to }(I-W) \mathbf{x}=0 .
\end{aligned} \Leftrightarrow\left[\begin{array}{l}
0 \\
0
\end{array}\right] \in\left[\begin{array}{c}
\partial_{\mathbf{x}} L(\mathbf{x} ; \mathbf{y}) \\
\partial_{\mathbf{y}}(-L(\mathbf{x} ; \mathbf{y}))
\end{array}\right]
$$

which expands to

Forward-backward splitting (FBS)

Let matrix M be symmetric, positive definite.
From

$$
\begin{aligned}
0 \in x(\mathbf{z})+(\mathbf{z}) & \Leftrightarrow M \mathbf{z}-(\mathbf{z}) \in M \mathbf{z}+x(\mathbf{z}) \\
& \Leftrightarrow\left(I-M^{-1}\right) \mathbf{z} \in\left(I+M^{-1} x\right) \mathbf{z} \\
& \Leftrightarrow \underbrace{\left(I+M^{-1} x\right)^{-1}}_{J_{M, x}} \underbrace{\left(I-M^{-1}\right)}_{F_{M},} \mathbf{z}=\mathbf{z}
\end{aligned}
$$

we derive FBS under metric M

$$
\mathbf{z}^{k+1}=J_{M, \chi} F_{M,}\left(\mathbf{z}^{k}\right) \Leftrightarrow M \mathbf{z}^{k}-\left(\mathbf{z}^{k}\right) \in M \mathbf{z}^{k+1}+x\left(\mathbf{z}^{k+1}\right)
$$

Select

$$
M=\left[\begin{array}{cc}
\frac{1}{\alpha} I & -U^{T} \\
-U & \frac{1}{\beta} I
\end{array}\right]
$$

the right-hand side, $M \mathbf{z}^{k+1}+\chi\left(\mathbf{z}^{k+1}\right)$, becomes block lower-triangular, so we can first compute \mathbf{x}^{k+1}, then \mathbf{y}^{k+1}.

Using $\mathbf{w}^{k}=U^{T} \mathbf{y}^{k}$ and $\beta=1 /(2 \alpha)$, we obtain PG-EXTRA.

Network-independent stepsize

In EXTRA, parameter α is related to M, thus U, thus W, and thus the graph topology. α also depends on Lipschitz constants of ∇f_{i}.

Use a new metric

$$
M=\left[\begin{array}{cc}
\frac{1}{\alpha} I & 0 \\
0 & \frac{1}{\beta} I-\alpha U^{T} U
\end{array}\right]
$$

Applying Gaussian elimination to the system $M \mathbf{z}-(\mathbf{z}) \in M \mathbf{z}+x(\mathbf{z})$ yields a lower-triangular system.
Set $\beta=1 /(2 \alpha)$. We obtain decentralized method NIDS 5.
NIDS converges if $\alpha<\frac{2}{L}$, independent of the graph topology.
Easy to generalize to node-specific stepsizes $\alpha_{i}<\frac{2}{L_{i}}$, where L_{i} is Lipschitz constant of ∇f_{i}.

[^3]
Lots of decentralized work not covered

Nesterov-like acceleration (Qu-Li'17, Scaman et al'18), double-loop-based acceleration (Uribe-Lee-Gasnikov-Nedic'18, Li-Fang-Yin-Lin'18, ...)

Gradient tracking (Zhu-Martinez'10, Xu et al'15, Scutari-Sun'19, ...)
ADMM linear convergence (Yuan-Ling-Yin'16), on time-varying graphs (Nedic-Olshevsky-Shi'17, ...)

Left-stochastic W in (PushSum, Xi et al'18, Xin-Xi-Khan'19, Yuan-Ying-Zhao-Sayed'19, ...)

Asynchronous (Wu et al.18, ...)
Incorporating SGD (Lian et al'17, Lian et al'18, ...)

Decentralized SGD for deep learning

DNN training

Parameter server approach [Li et.al. 2014]

Pros: mature implementation (2015-), fault tolerance
Cons: many-to-one communication is no scalable

Ring Allreduce [Patarasuk and Yuan 2009]

Started by Distributed PaddlePaddle [Gibiansky 2017] (Baidu)
Popularized by Horovod [Sergeev and Del Balso 2018] (Linux Foundation AI)

Pros: mature implementation (2018-), bandwidth optimality
Cons: total latency grows linearly

Distributed Tensorflow vs Horovod

Result is from Horovod GitHub homepage.

- Communication framework for PyTorch
- Just a few lines of Python
- Supports MPI and NCCL
- Higher throughput than Hovovod

Fixed vs dynamic neighbor averaging

Fixed Neighbor-averaging SGD:

$$
x_{i}^{k+1}=\sum_{j=1}^{n} W_{i j}\left(x_{j}^{k}-\alpha^{k}(\text { mini-batch grad at } j)\right) .
$$

Dynamic Neighbor-averaging SGD:

$$
x_{i}^{k+1}=\sum_{j=1}^{n} W_{i j}^{(k)}\left(x_{j}^{k}-\alpha^{k}(\text { mini-batch grad at } j)\right) .
$$

Each round uses a different W.
Further generalization:

1. if communication is faster, apply multiple W per mini-batch gradient
2. if communication is slower, apply multiple mini-batch gradients per W

For simplicity, assume one W per mini-batch gradient

Dynamic exp2-ring [Assran et.al. 2019]

Take $n=16$ for example. Break a 16 -node exp2-graph into four subgraphs. To each subgraph, assign a unique W with weights $1 / 2,1 / 2$ for the active nodes.

In every subgraph, every node communicates one other node. Computing $W \mathbf{y}$ takes $O(1)$ time.

Exact averaging achieved by finite dynamic neighbor averaging

Theorem: When $n=2^{\tau}$ for $\tau \in \mathbb{Z}$, dynamic exp-2 averaging satisfies

$$
W^{(\tau)} W^{(\tau-1)} \cdots W^{(1)}=\frac{1}{n} 11^{T}
$$

Furthermore, for any $p=2, \ldots, \tau$,

$$
W^{(p-1)} \cdots W^{(1)} W^{(\tau)} \cdots W^{(p)}=\frac{1}{n} \mathbf{1 1}^{T}
$$

This W-sequence is communication optimal among all averaging matrices.

Large-scale training for image classification

- Model: ResNet-50 (~25.5M parameters)
- Dataset: ImageNet-1K (1000 classes)
- Size: 1,281,167 training images and 50,000 validation images
- GPUs: 8×8

Method	Epochs/Hours to 76\%.
Allreduce SGD	$68 / 5.57$
Neighbor-averaging SGD	$76 / 4.23$

Summary

Decentralized optimization is based on local communication like "gossiping"

Decentralized optimization relaxes strong consensus to weak consensus or multi-step strong consensus

Decentralized optimization is suitable where decentralization is natural or centralized communication is too expensive

[^0]: ${ }^{1}$ Nedic-Ozdaglar'09, also related to Cattivelli-Lopes-Sayed'07

[^1]: ${ }^{2} \chi$ is μ-strongly monotone or μ-coercive if $\langle\chi x-x y, x-y\rangle \geq \mu\|x-y\|^{2}$.
 x is β-coercive if $\langle\chi x-x y, x-y\rangle \geq \beta\|x x-x y\|^{2}$.

[^2]: ${ }^{3}$ Shi-Ling-Wu-Yin'15
 ${ }^{4}$ Shi-Ling-Wu-Yin'15b

[^3]: ${ }^{5}$ Li-Shi-Yan'19, also related to Nedic-Olshevsky-Shi-Uribe'17, Qu-Li'18.

