Part 2: Decentralized optimization

Decentralized optimization

Consider an undirected, connected graph G = (V, E). Each node $i \in E$ has an objective function f_i .

If node i uses only its local and adjacent information to compute, we call it *local operation*.

Decentralized optimization uses local operations to achieve a global optimization objective.

Why decentralized?

- The nature of certain multi-agent systems
- Avoid long-distance communication. Reduce contention.
- Reliability, privacy considerations

Decentralized ADMM

Consider: n agents minimize their joint sum:

minimize
$$\sum_{i=1}^{n} f_i(x)$$

With y_e for each undirected edge $e=\{i,j\}\in E$ we obtain the ADMM-ready form:

$$\begin{array}{ll} \underset{\{x_i\}_{i \in V}}{\underset{\{y_e\}_{e \in E}}{\overset{\{x_i\}_{i \in V}}{\underset{i \in V}{\overset{i : i {i \in V}}{\overset{i : i {i : i {i : V}{\overset{i : V}{\overset{$$

We can simplify the ADMM into

$$\begin{split} x_i^{k+1} &= \mathbf{prox}_{(\alpha|N_i|)^{-1}f_i}(v_i^k) & i \in V \\ \begin{cases} a_i^{k+1} &= \frac{1}{|N_i|} \sum_{j \in N_i} x_j^{k+1} \\ v_i^{k+1} &= v_i^k + a_i^{k+1} - \frac{1}{2}a_i^k - \frac{1}{2}x_i^k \end{cases} & i \in V. \end{split}$$

It uses only local computation and local communication (neighborhood allreduce).

We call this method Decentralized ADMM.

A broader class of methods based on local mixing

Average consensus

Goal: compute the average of decentralized vectors $a_1, \ldots, a_n \in \mathbb{R}^d$.

Let x_i^k be the kth iterate of node i. Set $x_i^0 = a_i$. Common approach:

$$x_i^{k+1} = w_{ii}x_i^k + \sum_{j \in N_i} w_{ij}x_j^k, \quad i = 1, \dots, n.$$

Local operations imply: $w_{ij} \neq 0$ only for i = j and $(i, j) \in E$. Using

$$\mathbf{x} = \begin{bmatrix} -x_1^T & - \\ \vdots \\ -x_n^T & - \end{bmatrix} \in \mathbb{R}^{n \times d},$$

we get

$$\mathbf{x}^k = W \mathbf{x}^{k-1} = \dots = W^k \mathbf{x}^0.$$

To obtain

$$\lim_{k \to \infty} W^k \mathbf{x}^0 = \begin{bmatrix} \vdots \\ \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i^0 \\ \vdots \end{bmatrix} = \frac{1}{n} \mathbf{1} \mathbf{1}^T \mathbf{x}^0.$$

for any $\mathbf{x}^0,$ we deduct

- W1 = 1
- $1^T = 1^T W$
- $\lambda_{\max}(W) = 1$ and $1 > \lambda_2(W) \ge \cdots \ge \lambda_n(W) > -1$.

Consensus minimization

Average consensus

$$\underset{\mathbf{x}}{\text{minimize}} \quad \sum_{i=1}^{n} \frac{1}{2} \|x_i - a_i\|^2, \quad \text{subject to } x_i = x_j, \quad \forall \text{ nodes } i, j \in V.$$

Generalization to minimization

$$\underset{\mathbf{x}}{\text{minimize}} \quad \sum_{i=1}^{n} f_i(x_i), \quad \text{subject to } x_i = x_j, \quad \forall \text{ nodes } i, j \in V.$$

Penalty formulation

Recall property of W:

$$W\mathbf{x} = \mathbf{x} \quad \Leftrightarrow \quad (I - W)\mathbf{x} = 0 \quad \Leftrightarrow \quad x_1 = \dots = x_n.$$

A penalty (inexact) formulation:

$$\underset{\mathbf{x}}{\text{minimize}} \sum_{i=1}^{n} h_i(x_i) + \frac{1}{2\rho} \|\mathbf{x}\|_{I-W}^2.$$
(1)

Applying gradient descent to (2) yields DGD^1

$$\mathbf{x}^{k+1} = W\mathbf{x}^k - \alpha \nabla h(\mathbf{x}^k)$$

We call it adaptation-with-combination or AWC-DGD.

¹Nedic-Ozdaglar'09, also related to Cattivelli-Lopes-Sayed'07

Another penalty formulation

Assume $\min\{\lambda_2(W), \ldots, \lambda_n(W)\} > 0$, i.e., $W \succ 0$. Consider

$$\underset{\mathbf{x}}{\text{minimize}} \sum_{i=1}^{n} h_i(x_i) + \frac{1}{2\rho} \|\mathbf{x}\|_{W^{-1}-I}^2.$$
(2)

Apply variable-metric gradient descent

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha W(\nabla h(\mathbf{x}^k) - \frac{1}{\alpha}(W^{-1} - I)\mathbf{x}^k)$$
$$= W\left(\mathbf{x}^k - \alpha \nabla h(\mathbf{x}^k)\right)$$

We call it adaptation-then-combination or ATC-DGD.

Constrained formulation

Consider

minimize
$$\sum_{i=1}^{n} (h_i(x_i) + g_i(x_i))$$
, subject to $(I - W)\mathbf{x} = 0$.

Write

$$h(\mathbf{x}) = \sum_{i=1}^n h_i(x_i)$$
 and $g(\mathbf{x}) = \sum_{i=1}^n g_i(x_i).$

Both $h(\mathbf{x})$ and $g(\mathbf{x})$ are separable. But, $(I - W)\mathbf{x} = 0$ is not. How to derive methods based on multiplying by W? **Operator splitting**

Operator splitting

1. Formulate a problem into the form

 $0 \in \varkappa(x) + (x)$ or $0 \in \varkappa(x) + (x) + (x)$

where $\varkappa, \, : \mathbb{R}^n \to \mathbb{R}^n$ are (point- or set-valued) operators

- 2. Apply a splitting scheme to get ${\mathbb Q}$ such that
 - $z^* = \mathbb{Q}z^*$ recovers a solution x^*
 - computing \mathbb{Q} is easy (by evaluating \varkappa , separately)
 - $z^{k+1} \leftarrow \mathbb{Q} z^k$ converges

Forward and backward operators

	Forward op.	Backward op. (Resolvent)
definition	$(I - \gamma \varkappa)$	$J_{\gamma\varkappa} = (I + \gamma\varkappa)^{-1}$
analogy	forward Euler	backward Euler
	grad descent	proximal mapping
example:	$arkappa = abla f$ of cvx $f \in C^1$	$\varkappa = \partial f$ of $cvx\; f$
	yields $(I - \gamma \nabla f);$	yields $\mathbf{prox}_{\gamma f};$
example:	skew-symm A	projection to cvx set

Basic operator splitting schemes

 $0 \in \varkappa x + x$

 forward-backward splitting (FBS) (Mercier'79) for $(maximally monotone) + (cocoercive)^2$

 $\mathbf{0} = J_{\gamma \varkappa} (I - \gamma)$

 Douglas-Rachford splitting (DRS) (Lion-Mercier'79) for (maximally monotone) + (maximally monotone)

$$\mathbb{Q} = \frac{1}{2}I + \frac{1}{2}(2J_{\gamma\varkappa} - I)(2J_{\gamma} - I)$$

They generalize the **proximal point method** (PPM).

 $\label{eq:linear_strongly} \begin{array}{l} 2\varkappa \text{ is } \mu\text{-strongly monotone or } \overline{\mu\text{-coercive if } \langle\varkappa x - \varkappa y, \varkappa - y\rangle} \geq \mu \|\varkappa - y\|^2. \\ \varkappa \text{ is } \beta\text{-coercive if } \langle\varkappa x - \varkappa y, \varkappa - y\rangle \geq \beta \|\varkappa x - \varkappa y\|^2. \end{array}$

 $0\in \mathbf{x}x+x+x$

• three-operator splitting (DYS) (Davis-Yin'15) for

(maximally monotone) + (maximally monotone) + (cocoercive):

$$\mathbb{Q}=I-J_{\gamma\varkappa}+J_{\gamma}(2J_{\gamma\varkappa}-I+\gamma J_{\gamma\varkappa})$$
 where $J_{\varkappa}:=(I+\varkappa)^{-1}.$

DYS generalizes FBS and DRS.

EXTRA Method

EXTRA

 EXTRA^3 is the first method that uses a fixed stepsize and converges linearly if $\sum_{i=1}^n f(x)$ is strongly convex.

Iteration:

$$\mathbf{x}^{k+1} \leftarrow W\mathbf{x}^k - \alpha \nabla f(\mathbf{x}^k) - \sum_{j=0}^{k-1} \frac{1}{2}(I-W)\mathbf{x}^j.$$

$$\mathbf{x}^{k+1} \leftarrow \underbrace{(I + \alpha \partial g)^{-1}}_{\mathbf{prox}_{\alpha g}} \left(W \mathbf{x}^k - \alpha \nabla f(\mathbf{x}^k) - \sum_{j=0}^{k-1} \frac{1}{2} (I - W) \mathbf{x}^j \right).$$

We can derive them from operator splitting.

³Shi-Ling-Wu-Yin'15

⁴Shi-Ling-Wu-Yin'15b

Saddle-point problem and splitting

Let

$$U^T U = (I - W).$$

So $U\mathbf{x} = 0$ iff $(I - W)\mathbf{x} = 0$.

With Lagrangian

$$L(\mathbf{x}; \mathbf{y}) = f(\mathbf{x}) + g(\mathbf{x}) + \mathbf{y}^T U \mathbf{x},$$

ignoring regularity conditions, we get

minimize_{**x**}
$$f(\mathbf{x}) + g(\mathbf{x})$$

subject to $(I - W)\mathbf{x} = 0$. $\Leftrightarrow \begin{bmatrix} 0\\ 0 \end{bmatrix} \in \begin{bmatrix} \partial_{\mathbf{x}} L(\mathbf{x}; \mathbf{y})\\ \partial_{\mathbf{y}} (-L(\mathbf{x}; \mathbf{y})) \end{bmatrix}$,

which expands to

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \left(\underbrace{\begin{bmatrix} \nabla f & 0 \\ 0 & 0 \end{bmatrix}}_{\mathbf{x}} + \underbrace{\begin{bmatrix} \partial g & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & U^T \\ -U & 0 \end{bmatrix}}_{\mathbf{x}} \right) \underbrace{\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}}_{\mathbf{z}},$$

Forward-backward splitting (FBS)

Let matrix M be symmetric, positive definite.

From

$$0 \in \varkappa(\mathbf{z}) + (\mathbf{z}) \iff M\mathbf{z} - (\mathbf{z}) \in M\mathbf{z} + \varkappa(\mathbf{z})$$
$$\Leftrightarrow (I - M^{-1})\mathbf{z} \in (I + M^{-1}\varkappa)\mathbf{z}$$
$$\Leftrightarrow \underbrace{(I + M^{-1}\varkappa)^{-1}}_{J_{M,\varkappa}} \underbrace{(I - M^{-1})}_{F_{M,\chi}} \mathbf{z} = \mathbf{z}$$

we derive FBS under metric ${\cal M}$

$$\mathbf{z}^{k+1} = J_{M,\mathbf{x}} F_{M,\mathbf{x}}(\mathbf{z}^k) \Leftrightarrow M \mathbf{z}^k - (\mathbf{z}^k) \in M \mathbf{z}^{k+1} + \varkappa(\mathbf{z}^{k+1})$$

Select

$$M = \begin{bmatrix} \frac{1}{\alpha}I & -U^T\\ -U & \frac{1}{\beta}I \end{bmatrix},$$

the right-hand side, $M\mathbf{z}^{k+1} + \varkappa(\mathbf{z}^{k+1})$, becomes block lower-triangular, so we can first compute \mathbf{x}^{k+1} , then \mathbf{y}^{k+1} .

Using $\mathbf{w}^k = U^T \mathbf{y}^k$ and $\beta = 1/(2\alpha)$, we obtain PG-EXTRA.

Network-independent stepsize

In EXTRA, parameter α is related to M, thus U, thus W, and thus the graph topology. α also depends on Lipschitz constants of ∇f_i .

Use a new metric

$$M = \begin{bmatrix} \frac{1}{\alpha}I & 0\\ 0 & \frac{1}{\beta}I - \alpha U^T U \end{bmatrix}.$$

Applying Gaussian elimination to the system $M\mathbf{z} - (\mathbf{z}) \in M\mathbf{z} + \varkappa(\mathbf{z})$ yields a lower-triangular system.

Set $\beta = 1/(2\alpha)$. We obtain decentralized method NIDS⁵.

NIDS converges if $\alpha < \frac{2}{L}$, independent of the graph topology.

Easy to generalize to node-specific stepsizes $\alpha_i < \frac{2}{L_i}$, where L_i is Lipschitz constant of ∇f_i .

⁵Li-Shi-Yan'19, also related to Nedic-Olshevsky-Shi-Uribe'17, Qu-Li'18.

Lots of decentralized work not covered

Nesterov-like acceleration (Qu-Li'17, Scaman et al'18), double-loop-based acceleration (Uribe-Lee-Gasnikov-Nedic'18, Li-Fang-Yin-Lin'18, ...)

Gradient tracking (Zhu-Martinez'10, Xu et al'15, Scutari-Sun'19, ...)

ADMM linear convergence (Yuan-Ling-Yin'16), on time-varying graphs (Nedic-Olshevsky-Shi'17, ...)

Left-stochastic W in (PushSum, Xi et al'18, Xin-Xi-Khan'19, Yuan-Ying-Zhao-Sayed'19, ...)

```
Asynchronous (Wu et al.18, ...)
```

```
Incorporating SGD (Lian et al'17, Lian et al'18, ...)
```

Decentralized SGD for deep learning

DNN training

Parameter server approach [Li et.al. 2014]

Pros: mature implementation (2015–), fault tolerance **Cons**: many-to-one communication is no scalable

Ring Allreduce [Patarasuk and Yuan 2009]

Started by Distributed PaddlePaddle [Gibiansky 2017] (Baidu) Popularized by Horovod [Sergeev and Del Balso 2018] (Linux Foundation AI)

Pros: mature implementation (2018–), bandwidth optimality **Cons:** total latency grows linearly

Distributed Tensorflow vs Horovod

Training with synthetic data on NVIDIA® Pascal™ GPUs

Result is from Horovod GitHub homepage.

- Communication framework for PyTorch
- Just a few lines of Python
- Supports MPI and NCCL
- Higher throughput than Hovovod

Fixed vs dynamic neighbor averaging

Fixed Neighbor-averaging SGD:

$$x_i^{k+1} = \sum_{j=1}^n W_{ij} \left(x_j^k - \alpha^k (\text{mini-batch grad at } j) \right).$$

Dynamic Neighbor-averaging SGD:

$$x_i^{k+1} = \sum_{j=1}^n W_{ij}^{(k)} \left(x_j^k - lpha^k({\sf mini-batch grad at }j)
ight).$$

Each round uses a different W.

Further generalization:

- 1. if communication is faster, apply multiple \boldsymbol{W} per mini-batch gradient
- 2. if communication is slower, apply multiple mini-batch gradients per ${\boldsymbol W}$

For simplicity, assume one \boldsymbol{W} per mini-batch gradient

Dynamic exp2-ring [Assran et.al. 2019]

Take n = 16 for example. Break a 16-node exp2-graph into four subgraphs. To each subgraph, assign a unique W with weights 1/2, 1/2 for the active nodes.

In every subgraph, every node communicates one other node. Computing $W\mathbf{y}$ takes O(1) time.

Exact averaging achieved by finite dynamic neighbor averaging

Theorem: When $n = 2^{\tau}$ for $\tau \in \mathbb{Z}$, dynamic exp-2 averaging satisfies

$$W^{(\tau)}W^{(\tau-1)}\cdots W^{(1)} = \frac{1}{n}\mathbf{1}\mathbf{1}^T$$

Furthermore, for any $p=2,\ldots,\tau$,

$$W^{(p-1)}\cdots W^{(1)}W^{(\tau)}\cdots W^{(p)} = \frac{1}{n}\mathbf{1}\mathbf{1}^{T}.$$

This W-sequence is communication optimal among all averaging matrices.

Large-scale training for image classification

- Model: ResNet-50 (~25.5M parameters)
- Dataset: ImageNet-1K (1000 classes)
- Size: 1,281,167 training images and 50,000 validation images
- GPUs: 8×8

Method	Epochs/Hours to 76%.
Allreduce SGD	68 / 5.57
Neighbor-averaging SGD	76 / 4.23

Summary

Decentralized optimization is based on local communication like "gossiping"

Decentralized optimization relaxes strong consensus to weak consensus or multi-step strong consensus

Decentralized optimization is suitable where decentralization is natural or centralized communication is too expensive