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ABSTRACT

A necessary ingredient of an ensemble Kalman filter (EnKF) is covariance inflation, used to control filter

divergence and compensate for model error. There is an on-going search for inflation tunings that can be

learned adaptively. Early in the development of Kalman filtering, Mehra (1970, 1972) enabled adaptivity in the

context of linear dynamics with white noise model errors by showing how to estimate the model error and

observation covariances. We propose an adaptive scheme, based on lifting Mehra’s idea to the non-linear case,

that recovers the model error and observation noise covariances in simple cases, and in more complicated

cases, results in a natural additive inflation that improves state estimation. It can be incorporated into non-

linear filters such as the extended Kalman filter (EKF), the EnKF and their localised versions. We test the

adaptive EnKF on a 40-dimensional Lorenz96 model and show the significant improvements in state

estimation that are possible. We also discuss the extent to which such an adaptive filter can compensate for

model error, and demonstrate the use of localisation to reduce ensemble sizes for large problems.
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1. Introduction

The Kalman filter is provably optimal for systems where the

dynamics and observations are linear withGaussian noise. If

the covariance matrices Q and R of the model error and

observation error, respectively, are known, then the stan-

dard equations provided originally by Kalman (1960) give

the maximum likelihood estimate of the current state. If in-

exactQ andR are used in Kalman’s equations, the filter may

still give reasonable state estimates, but it will be suboptimal.

In the case of linear dynamics, Mehra (1970, 1972)

showed that the exact Q and R could be reconstructed by

auxiliary equations added to the Kalman filter, in the case

of Gaussian white noise model error. This advance opened

the door for adaptive versions of the filter. More recently,

approaches to non-linear filtering such as the extended

Kalman filter (EKF) and ensemble Kalman filter (EnKF)

have been developed (Evensen, 1994, 2009; Houtekamer

and Mitchell, 1998; Kalnay, 2003; Simon, 2006). Proposals

have been made (Daley, 1992; Dee, 1995; Anderson, 2007;

Li et al., 2009) to extend the idea of adaptive filtering to

non-linear filters. However, none of these showed the

capability of recovering an arbitrary Q and R simulta-

neously, even in the simplest non-linear setting of Gaussian

white noise model error and observation error. One goal of

this article is to introduce an adaptive scheme in the

Gaussian white noise setting that is a natural generalisation

of Mehra’s approach, and that can be implemented on a

non-linear Kalman-type filter. We demonstrate the recon-

struction of full, randomly generated error covariance

matrices Q and R in Example 4.1.

The technique we describe builds on the innovation

correlation method of Mehra. Significant modifications are

required to lift this technique to the non-linear domain. In

particular, we will explicitly address the various stationarity

assumptions required by Mehra, which are violated for a

non-linear model. As shown by Mehra and later by Daley

(1992) and Dee (1995), the innovation correlations are a

blended mixture of observation noise, predictability error

(due to state uncertainty), and model error. Disentangling

them is non-trivial due to the non-stationarity of the local

linearisations characteristic of strongly non-linear systems.

Many previous techniques have been based on averages of

the innovation sequence, but our technique will not directly

average the innovations.

Instead, at each filter step, the innovations are used,

along with locally linearised dynamics and observations, to

recover independent estimates of the matrices Q and R.

These estimates are then integrated sequentially using a

moving average to update the matrices Qfilt
k and Rfilt

k used by

the filter at time step k. By treating each innovation
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separately, using the local linearisations relevant to the

current state, we are able to recover the full matrices

Q and R when the model error is Gaussian white noise,

and to improve state estimates in more complicated settings.

Gaussian white noise model error is an unrealistic

assumption for practical applications. Typically, more sig-

nificant model errors, as well as partial observability, must

be addressed. In this case, we interpret the covariance

matrix Qfilt
k [see eq. (2)] as an additive covariance inflation

term whose role is to prevent filter divergence and to

improve the estimate of the underlying state.

Covariance inflation, originally suggested in the study

by Anderson and Anderson (1999), adjusts the forecast

error covariance to compensate for systematic underestima-

tion of the covariance estimates given by the Kalman filter.

There is a rapidly growing list of approaches to covariance

inflation strategies (Desroziers et al., 2005; Constatinescu

et al., 2007a, 2007b; Anderson, 2008; Li et al., 2009; Luo and

Hoteit, 2011, 2012). In the study by Wang and Bishop

(2003), Li et al. (2009) and Hamill et al. (2001), techniques

are presented for finding inflation factors that implicitly

assume a very simple structure for the noise covariance.

There are also many techniques based on the covariance of

the implied observation errors at each time step (Mitchell

and Houtekamer, 2000; Anderson, 2001; Evensen, 2003;

Desroziers et al., 2005; Jiang, 2007). These were actually

anticipated and rejected by Mehra (1972), who called them

covariance matching techniques. He showed that these tech-

niques were not likely to converge unless the system noise

was already known. As untangling the observation noise

and system noise is the key difficulty in adaptive filtering, we

do not wish to assume prior knowledge of either.

At the same time, new theory is emerging that begins to

give mathematical support to particular applications,

including the recent article by Gonzalez-Tokman and

Hunt (2013) that shows convergence of the EnKF in the

sense of the existence of a shadowing trajectory under

reasonable hyperbolicity assumptions. In their approach,

there is no system noise, and perfect knowledge of the

(deterministic) model and the observation noise covariance

matrix are necessary to make the proof work. Furthermore,

optimality is not addressed, which naturally leads to the

question of the optimal choice of the covariance matrices

used by the filter. We speculate that an appropriate

adaptive filter may be the key to finding the optimal

covariance matrices.

We begin the next section by demonstrating the impor-

tance of knowing the correctQ andR for the performance of

a Kalman filter. Next, we recall the adaptive filter developed

in the study by Mehra (1970, 1972) that augments the

Kalman filter to estimate Q and R in the case of linear

dynamics. In Section 3, we describe an adaptive filter that

can find Q and R in real time even for non-linear dynamics

and observations, building on the ideas ofMehra. In Section

4, we test the adaptive filter on a 40-dimensional model of

Lorenz (1996) and show the dramatic improvements in

filtering that are possible. In addition, we show that this

adaptive filter can also compensate for significant model

error in the Lorenz96 model. We also propose new ideas to

extend our technique to the cases of rank-deficient observa-

tions and non-additive noise, and discuss an implementation

that augments the local ensemble transform Kalman filter

(LETKF) version of the EnKF.

2. Extensions of the Kalman filter

Kalman filtering (Kalman, 1960) is a well-established part

of the engineering canon for state and uncertainty quanti-

fication. In the linear case with Gaussian noise, Kalman’s

algorithm is optimal. As our main interest is the case of

non-linear dynamics, we will use notation that simplifies

exposition of two often-cited extensions, EKF and EnKF.

For simplicity, we will work in the discrete setting and

assume a non-linear model of the following form:

xkþ1 ¼ f ðxkÞ þ xkþ1

ykþ1 ¼ hðxkþ1Þ þ nkþ1 (1)

where xkþ1 and nkþ1 are zero-mean Gaussian noise with

covariance matrices Q and R, respectively. The system is

given by f and Q is the covariance of the one-step

dynamical noise. The value of an observation is related to

x by the function h, with observational noise covariance

R. To simplify the notation, we assume the covariance

matrices are fixed in time, although in later examples we

allow Q and R to drift and show that our adaptive scheme

will track slow changes.

We are given a multivariate time series of observations,

with the goal of estimating the state x as a function of time.

The Kalman filter follows an estimated state xa
k and an

estimated state covariance matrix Pa
k. Given the estimates

from the previous step, the Kalman update first creates

forecast estimates xf
kþ1 and Pf

kþ1 using the model, and then

updates the forecast estimate using the observation ykþ1. The

goal of non-linear Kalman filtering is to correctly interpret

and implement the linear Kalman equations

xf
kþ1 ¼ Fkx

a
k

yfkþ1 ¼ Hkþ1x
f
kþ1

Pf
kþ1 ¼ FkP

a
kF

T
k þQfilt

k

Py
kþ1 ¼ Hkþ1P

f
kþ1H

T
kþ1 þ Rfilt

k

Kkþ1 ¼ Pf
kþ1H

T
kþ1ðP

y
kþ1Þ

%1

Pa
kþ1 ¼ ðI % Kkþ1Hkþ1ÞP

f
kþ1

xa
kþ1 ¼ xf

kþ1 þ Kkþ1 ykþ1 % yfkþ1

! "
(2)
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where Py
kþ1 is the covariance of the observation, and yfkþ1 is

the forecast observation implied by the previous state

estimate. The matrices Qfilt
k and Rfilt

k should be chosen to

equal Q and R, respectively, in the linear case; how to

choose them in general is the central issue of our

investigation. The EKF extends the Kalman filter to

systems of the form (1) by explicitly computing linearisa-

tions Fk and Hkþ1 from the dynamics. In the EnKF, these

quantities are computed more indirectly, using ensembles;

we give more complete details in Section 4.

Filter performance depends strongly on the covariances

Qfilt
k and Rfilt

k that are used in the algorithm. In fact, for

linear problems the algorithm is provably optimal only

when the true covariances Qfilt
k !Q and Rfilt

k !R are used.

For non-linear problems, even for Gaussian white noise

model error, using the exact Qfilt
k !Q can lead to filter

instability (see Fig. 5c and d). This is because the local

linearisations Fk and Hkþ1 introduce an additional model

error which may systematically underestimate Pf
k. More

generally, the model error in applications is typically not

Gaussian white noise, and Qfilt
k must be interpreted as an

additive inflation, which attempts to compensate for the

covariance structure of the model error.

In Fig. 1, we illustrate the effect of various suboptimal

Qfilt
k and Rfilt

k on a non-linear problem by running an EnKF

on a 40-site Lorenz96 model (Lorenz, 1996; Lorenz and

Emanuel, 1998). (Full details of the model are given in

Section 4.) In the limit of large Qfilt
k or small Rfilt

k , we find

that the root mean-squared error (RMSE) of filtered state

estimates approach the RMSE of the unfiltered signal.

Intuitively, when Qfilt
k is large and Rfilt

k is small the filter has

no confidence in the forecast relative to the observation

and the filter simply returns the observation. For a filter to

be non-trivial, we must use a smaller Qfilt
k and a larger Rfilt

k .

However, as shown in Fig. 1, when the former is too small

or the latter is too large, the RMSE of the filtered signals

can actually be higher than the RMSE of the original noisy

signals. In one extreme, the filter becomes trivial, and in

the other extreme it is possible for the filter to actually

degrade the signal. Figure 1 illustrates that a key to filter

performance lies in the choice of Qfilt
k and Rfilt

k .

In Section 3, we present a novel adaptive scheme that

augments eq. (2) to also update the matrices Qfilt
k and Rfilt

k at

each filter step based on the observations. As the adaptive

scheme is a natural generalisation of the Kalman update, it

can be used in many of the extensions of the Kalman filter

for non-linear problems.

3. An adaptive non-linear Kalman filter

For the case of linear dynamics with linear full-rank

observation, the adaptive filtering problem was solved in

two seminal papers (Mehra, 1970, 1972). Mehra considered

the innovations of the Kalman filter, which are defined

as Ek!yk % yfk and represent the difference between the

observation and the forecast. In his innovation correla-

tion method, he showed that the cross-correlations of

the innovations could be used to estimate the true matrices

Q and R. Intuitively, this is possible because cross-

correlations of innovations will be influenced by the sys-

tem and observation noise in different ways, which give

multiple equations involving Q and R. These differences

arise because the perturbations of the state caused by the

system noise persist and continue to influence the evolu-

tion of the system, whereas each observation contains an
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Fig. 1. Results of EnKF on a Lorenz96 data set (see Section 4)

with 400 different combinations of diagonal Qfilt
k and Rfilt

k matrices.

RMSE was computed by comparing the filter output to the time

series without observation noise. The correct Q and R (used to

generate the simulated data) were diagonal matrices with entries

Qii ¼ 0:01 and Rii ¼ 0:2, respectively. The RMSE of the signal

prior to filtering was 0.44 (shown as red dotted line) the RMSE of

the optimal filter using Qfilt
k ¼ Q and Rfilt

k ¼ R was 0.20 (shown as

black dotted line). In (a) we show the effect of varying Rfilt
k when

Qfilt
k ¼ Q and in (b) the effect of varying Qfilt

k when Rfilt
k ¼ R.
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independent realisation of the observation noise. When

enough observations are collected, the resulting system can

be solved for the true covariance matrices Q and R.

3.1. Adaptive Kalman filter for linear dynamics

In the case of linear dynamics with linear full-rank observa-

tions, the forecast covariancematrixPf and theKalman gain

K have a constant steady-state solution. Mehra shows that

for an optimal filter we have the following relationship

between the expectations of the cross-correlations of the

innovations and the matrices involved in the Kalman filter:

C0 & E½EkETk ( ¼ HPfHT þ R

C1 & E½Ekþ1E
T
k ( ¼ HFPfHT %HFKC0:

Now consider the case when the Kalman filter is not

optimal, meaning that the filter uses matrices Qfilt
k and Rfilt

k

that are not equal to the true values Q and R. In this case,

we must consider the issue of filter convergence. We say

that the filter converges if the limit of the state estimate

covariance matrices exists and is given by

M & lim
k!1

Pf
k ¼ lim

k!1
E½ðxk % xf

kÞðxk % xf
kÞ

T (

where Pf
k is the estimate of the uncertainty in the current

state produced by the Kalman filter at time step k. The

filter is called non-optimal because the state estimate

distribution will have higher variance than the optimal

filter, as measured by the trace ofM. As shown in the study

by Mehra (1970, 1972), for the non-optimal filter, M is

still the covariance matrix of the state estimate as long as

the above limit exists. Moreover, M satisfies an algebraic

Riccati equation given by

M ¼ F ðI % K1HÞMðI % K1HÞT þ K1RKT
1

# $
FT þQ

(3)

where K1 is the limiting gain of the non-optimal filter

defined by Qfilt and Rfilt. Note that the matrices Q and R in

(3) are the true, unknown covariance matrices.

Motivated by the appearance of the true covariance

matrices in the above equations, Mehra gave the following

procedure for finding these matrices and hence the optimal

filter. After running a non-optimal filter long enough that

the expectations in C0 and C1 have converged, the true Q

and R can be estimated by solving the following equations:

M ¼ ðHFÞ%1ðC1 þHFK1C0ÞH%T

R ¼ C0 %HMHT

Q ¼ M % F ðI % K1HÞMðI % K1HÞT þ K1RKT
1

# $
FT

(4)

Clearly, this method requires H to be invertible, and when

the observation had low rank, Mehra could not recover Q

with his method. With a more complicated procedure, he

was still able to find the optimal Kalman gain matrix K

even when he could not recover Q. However, this procedure

used the fact that the optimal gain is constant for a linear

model.

3.2. Extension to non-linear dynamics

Our goal is to apply this fundamental idea to non-linear

problems. Unfortunately, while the technique of Mehra has

the correct basic idea of examining the time correlations of

the innovation sequence, there are many assumptions that

fail in the non-linear case. First, the innovation sequence is

no longer stationary, and thus the expectations for C0 and

C1 are no longer well-defined. Second, the matrices H and

F (interpreted as local linearisations) are no longer fixed

and the limiting values of K and Pf no longer exist, and

therefore all of these matrices must be estimated at each

filter step. Third, Mehra was able to avoid explicitly finding

Q in the case of a rank-deficient observation by using the

limiting K, which does not exist in the non-linear case. For

non-linear dynamics, the optimal Kalman gain is not fixed,

making it more natural to estimate Q directly. When the

observations are rank-deficient, parameterisation of the

matrix Q will be necessary.

Consequently, the principal issue with lifting Mehra’s

technique to a non-linear model is that the local linear

dynamics are changing with each time step. Even in the

case of Gaussian white noise model error, the only quan-

tities that may be assumed fixed over time in the non-linear

problem are the covariance matrices Q and R. With this

insight, we solve Mehra’s equations (4) at each filter step

and update Qfilt
k and Rfilt

k at each step with an exponentially

weighted moving average. Thus, our iteration becomes

Pe
k ¼ ðHkþ1FkÞ

%1ðEkþ1E
T
k þHkþ1FkKkEkE

T
k ÞH%T

k

Qe
k ¼ Pe

k % Fk%1P
a
k%1F

T
k%1

Re
k ¼ EkE

T
k %HkP

f
kH

T
k

Qfilt
kþ1 ¼ Qfilt

k þ dðQe
k %Qfilt

k Þ

Rfilt
kþ1 ¼ Rfilt

k þ dðRe
k % Rfilt

k Þ (5)

where d must be chosen small enough to smooth the

moving average. Note that these equations naturally

augment the Kalman update in that they use the observa-

tion to update the noise covariances. This iteration is

straightforward to apply with the Extended Kalman Filter,

because Hk and Fk are explicitly known. For the EnKF,

these quantities must be estimated from the ensembles. This

extra step is explained in detail in Section 4.
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To explain the motivation behind our method, first

consider the following idealised scenario. We assume

that the unknown state vector xk is evolved forward

by a known time-varying linear transformation xkþ1!
Fkxk"xkþ1 and observed as ykþ1!Hkþ1xkþ1"nkþ1. Fur-

thermore, we assume that xkþ1 and nkþ1 are stationary

white noise random variables which are independent of

the state, time, and each other, and that E½xxT (!Q

and E½nnT (!R. In this scenario, we can express the

innovation as

Ek ¼ yk % yfk ¼ Hkðxk % xf
kÞ þ nk:

If we were able to average over all the possible realisations

of the random variables xk; x
f
k and nk (conditioned on all

previous observations) at the fixed time k, we would have

E½EkETk ( ¼ E½Hkðxk % xf
kÞðxk % xf

kÞ
THT

k ( þE½nkn
T
k (

¼ HkP
f
kH

T
k þ R:

However, the most important realisation is that only the

last expectation in this equation can be replaced by a time

average. This is because unlike nk, which are independent,

identically distributed random variables, the distribution

Pf
k is changing with time and thus each innovation is drawn

from a different distribution. In our idealised scenario, the

non-stationarity of Ek arises from the fact that the dynamics

are time-varying, and more generally for non-linear pro-

blems this same effect will occur due to inhomogeneity of

the local linearisations.

As we have no way to compute the expectation E½EkETk (,
we instead compute the matrix

Re
k ¼ EkE

T
k %HkP

f
kH

T
k

¼nkn
T
k þHkðxk % xf

kÞðxk % xf
kÞ

THT
k

%HkP
f
kH

T
k þ nkðxk % xf

kÞ
THT

k

þHkðxk % xf
kÞn

T
k :

Note that the last two terms have expected value of zero

(since E½nk(!0 for all k), and for each fixed k the difference

Hkðxk % xf
kÞðxk % xf

kÞ
THT

k %HkP
f
kH

T
k

has expected value given by the zero matrix. As these terms

have expected value of zero for each k, we can now replace

the average over realisations of nk with an average over k

since nk is assumed to be stationary. Thus, we have

lim
K!1

1

K

XK

k¼1

Re
k ¼ Ek½Re

k( ¼ Ek½nkn
T
k ( ¼ Enk

½nkn
T
k ( ¼ R

where Ek denotes an average over time and Enk
denotes an

average over possible realisations of the random variable

nk. This motivates our definition of Re
k as the empirical

estimate of the matrix R based on a single step of the filter.

Our method is to first recover the stationary component

and then average over time instead of averaging the

innovations. Thus, the equation for Rfilt
k is simply a moving

average of the estimates Re
k. Of course, in real applications,

the perturbation nk will not usually be stationary. How-

ever, our method is still advantageous since the matrix EkETk
is largely influenced by HkP

f
kH

T
k and thus by subtracting

these matrices we expect to improve the stationarity of the

sequence Re
k.

A similar argument motivates our choice of Pe
k and Qe

k as

the empirical estimates of the forecast and model error

covariances, respectively. First, we continue the expansion

of the k-th innovation as

Ekþ1 ¼ ykþ1 % yfkþ1 ¼ Hkþ1ðxkþ1 % xf
kþ1Þ þ nkþ1

¼ Hkþ1ðFkxk þ xkþ1 % Fkx
a
kÞ þ nkþ1

¼ Hkþ1ðFkxk % Fkðx
f
k þ KkEkÞÞ þHkþ1xkþ1 þ nkþ1

¼ Hkþ1Fkðxk % xf
kÞ %Hkþ1FkKkEk þHkþ1xkþ1 þ nkþ1:

By eliminating terms which have mean zero, we find the

following expression for the cross covariance:

Ekþ1E
T
k ¼ Hkþ1Fkðxk % xf

kÞðxk % xf
kÞ

THT
k %Hkþ1FkKkEkE

T
k :

Note that the expected value of ðxk % xf
kÞðxk % xf

kÞ
T is the

forecast covariance matrix Pf
k given by the filter. Solving

the above equation for ðxk % xf
kÞðxk % xf

kÞ
T gives an

empirical estimate of the forecast covariance from the

innovations. This motivates our definition of Pe
k, the

empirical forecast covariance, which we find by solving

Hkþ1FkP
e
kH

T
k ¼ Ekþ1E

T
k þHkþ1FkKkEkE

T
k :

It is tempting to use the empirical forecast to adjust the

filter forecast Pf
k; however, this is infeasible. The empirical

forecast is extremely sensitive to the realisation of the noise

and since the forecast covariance is not stationary for non-

linear problems, there is no way to average these empirical

estimates. Instead, we isolate a stationary model error

covariance, which can be averaged over time by separating

the predictability error from the forecast error.

In our idealised scenario, the forecast error Pf
k!Pp

k þQ

is the sum of the predictability error Pp
k and the model error

Q that we wish to estimate. We can estimate the predict-

ability error using the dynamics and the analysis covari-

ance from the previous step of the Kalman filter as

Pp
k ) Fk%1P

a
k%1F

T
k%1. Finally, we estimate the model error

covariance by

Qe
k ¼ Pe

k % Fk%1P
a
k%1F

T
k%1:

As with Re
k, in our example of Gaussian white noise model

error, this estimate of Qe
k is stationary and thus can be
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averaged over time in order to estimate the true model

error covariance Q. While in real applications, the actual

form of the forecast error is more complicated, a significant

component of the forecast error will often be given by

the predictability error estimated by the filter. Thus, it is

natural to remove this known non-stationary term before

attempting to estimate the stationary component of the

model error.

If the true values of Q and R are known to be constant in

time, then a cumulative average can be used; however, this

would take much longer to converge. The exponentially

weighted moving average allows the estimates of Qfilt
k and

Rfilt
k to adjust to slow or sporadic changes in the underlying

noise covariances. A large delta will allow fast changes in

the estimates but results in Qfilt
k and Rfilt

k varying signifi-

cantly. We define s!1=d to be the stationarity time scale of

our adaptive filter. Any changes in the underlying values

of Q and R are assumed to take place on a time scale

sufficiently greater than s. In the next section, we will show

(see Fig. 2) that our iteration can find complicated

covariance structures while achieving reductions in RMSE.

3.3. Compensating for rank-deficient observations

For many problems, Hk or Hkþ1Fk will not be invertible

because the number of observations per step m is less than

the number of elements n in the state. In this case, the

above algorithm cannot hope to reconstruct the entire

matrix Q. However, we can still estimate a simplified

covariance structure by parameterising Qe
k!

P
qpQp as a

linear combination of fixed matrices Qp. This parameter-

isation was first suggested by Bélanger (1974). To impose

this restriction, we first set

Ck ¼ Ekþ1E
T
k þHkþ1FkKkEkE

T
k %Hkþ1FkFk%1P

a
k%1F

T
k%1H

T
k

and note that we need to solve Hkþ1FkQ
e
kH

T
k !Ck. Thus,

we simply need to find the vector q with values qp that

minimise the Frobenius norm

Ck %
X

p

qpHkþ1FkQpH
T
k

%%%%%

%%%%%

%%%%%

%%%%%
F

:

To solve this, we simply vectorise all the matrices involved.

Let vecðCkÞ denote the vector made by concatenating the

columns of Ck. We are looking for the least-squares

solution of

Akq ¼
X

p

qpvecðHkþ1FkQpH
T
k Þ ) vecðCkÞ

where the p-th column of Ak is vecðHkþ1FkQpH
T
k Þ. We can

then find the least-squares solution q ¼ Ay
kvecðCkÞ and

form the estimated matrix Qe
k.

In the applications section, we will consider two parti-

cular parameterisations of Qe
k. The first is simply a diagonal

parameterisation using n matrices ðQpÞ!Epp, where Eij

is the elementary matrix whose only non-zero entry is 1 in

the ij position. The second parameterisation is a block-

constant structure, which will allow us to solve for Qe
k in

the case of a sparse observation. For the block-constant

structure, we choose a number b of blocks which divides n

and then we form b2 matrices fQðp;rÞg
b
p;r¼1, where ðQðp;rÞÞ!Pn=b

l;m¼1 Epn=bþl;rn=bþm. Thus, each matrix Qðp;rÞ consists of an

n=b#n=b submatrix which is all ones, and they sum to a

matrix whose entries are all ones.

Note that it is very important to choose matrices Qp

which complement the observation. For example, if the

observations are sparse then the matrix Hk will have

rows which are all zero. The block-constant parameterisa-

tion naturally interpolates from nearby sites to fill the

unobserved entries.

4. Application to the Lorenz model

In this section, we demonstrate the adaptive EnKF by

applying it to the Lorenz96 model (Lorenz, 1996; Lorenz

and Emanuel, 1998), a non-linear system which is known

to have chaotic attractors and thus provides a suitably

challenging test-bed. We will show that our method

recovers the correct covariance matrices for the observation

and system noise. Next, we will address the role of the

stationarity parameter s ¼ 1=d and demonstrate how this

parameter allows our adaptive EnKF to track changing

covariances. Finally, we demonstrate the ability of the

adaptive EnKF to compensate for model error by auto-

matically tuning the system noise.

The Lorenz96 model is an N-dimensional ordinary

differential equation given by

dxi

dt
¼ %xi%2xi%1 þ xi%1xiþ1 % xi þ F (6)

where x ¼ ½x1ðtÞ; . . . ; xNðtÞ( is a vector in RN and the

superscript on xi (considered modulo N) refers to the i-th

vector coordinate. The system is chaotic for parameters such

asN!40 and F!8, the parameters used in the forthcoming

examples. To realise the Lorenz96 model as a system of the

form (1), we consider x ¼ xk to be the state inR
N at time step

k. We define f ðxkÞ to be the result of integrating the system

(6) with initial condition xk for a single time step of length

Dt!0:05. For simplicity, we took the observation function h

to be the identity function except in Example 3, where we

examine a lower dimensional observation. When simulating

the system (1) to generate data for our examples, we

generated the noise vector xkþ1 by multiplying a vector of

N independent standard normal random numbers by the

symmetric positive-definite square root of the system noise

6 T. BERRY AND T. SAUER
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Fig. 2. We show the long-term performance of the adaptive EnKF by simulating Lorenz96 for 300000 steps and running the adaptive

EnKF with stationarity s ¼ 20000. (a) First row, left to right: true Q matrix used in the Lorenz96 simulation, the initial guess for Qfilt
k

provided to the adaptive filter, the final Qfilt
k estimated by the adaptive filter, and the final matrix difference Q%Qfilt

k . The second row shows

the corresponding matrices for R; (b) RMSE of Q%Qfilt
k as Qfilt

k is estimated by the filter; (c) RMSE of R% Rfilt
k as Rfilt

k is estimated by the

filter; (d) comparison of windowed RMSE vs. number of filter steps for the conventional EnKF run with the true Q and R (black, lower

trace), and the conventional EnKF run with the initial guess matrices (red, upper trace), and our adaptive EnKF initialised with the guess

matrices (blue, middle trace).
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covariance matrix Q. Similarly, we generated nkþ1 using

the square root of the observation noise covariance

matrix R.

In the following examples, we will demonstrate how the

proposed adaptive EnKF is able to improve state estima-

tion for the Lorenz96 model. In all of these examples, we

will use the RMSE between the estimated state and the true

state as a measure of the filter performance. The RMSE

will always be calculated over all N!40 observation

sites of the Lorenz96 system. In order to show how the

error evolves as the filter runs, we will often plot RMSE

against filter steps by averaging over a window of 1000

filter steps centred at the indicated filter step. As we are

interested in recovering the entire matrices Q and R, we

use RMSE to measure the error Q%Qfilt
k and R% Rfilt

k .

The RMSE in this case refers to the square root of the

average of the squared errors over all the entries in the

matrices.

The EnKF uses an ensemble of state vectors to represent

the current state information. In Examples 4.1$4.4, we

will use the unscented version of the EnKF from the study

by Julier et al. (2000, 2004). For simplicity, we do not

propagate the mean (j ¼ 0 in Simon, 2006) or use any

scaling. When implementing an EnKF, the ensemble can be

integrated forward in time and observed using the non-

linear equations (1) without any explicit linearisation. Our

augmented Kalman update requires the local linearisations

Fk and Hkþ1. While these are assumed available in the

extended Kalman filter, for an EnKF these linear trans-

formations must be found indirectly from the ensembles.

Let Ea
k be a matrix containing the ensemble perturbation

vectors (the centred ensemble vectors) which represents

the prior state estimate and let Ef
kþ1 be the forecast

perturbation ensemble which results from applying the

non-linear dynamics to the prior ensemble. We define Fk

to be the linear transformation that best approximates

the transformation from the prior perturbation ensemble

to the forecast perturbation ensemble. Similarly, to define

Hkþ1 we use the inflated forecast perturbation ensemble

Ex
kþ1 and the ensemble Ey

kþ1 which results from applying

the non-linear observation to forecast ensemble. To

summarise, in the context of an EnKF, we define Fk and

Hkþ1 by

Fk ¼ Ef
kþ1ðEa

kÞ
y

Hkþ1 ¼ Ey
kþ1ðE

x
kþ1Þ

y (7)

where $ indicates the pseudo-inverse. There are many

methods of inflating the forecast perturbation ensemble

from Ef
kþ1. In the examples below, we always use the

additive inflation factor Qfilt
k by finding the covariance

matrix Pf
kþ1 of the forecast ensemble, forming Px

kþ1!
Pf

kþ1 þQfilt
k , and then taking the positive-definite square

root of Px
kþ1 to form the inflated perturbation ensemble

Ex
kþ1.

Example 4.1. Finding the noise covariances

In the first example, both the Q and R matrices were

generated randomly (constrained to be symmetric and

positive-definite) and the discrete-time Lorenz96 model

was simulated for 20000 time steps. We then initialised

diagonal matrices Qfilt
k and Rfilt

k as shown in Fig. 2 and

applied the standard EnKF to the simulated data. The

windowed RMSE is shown in the red curve of Fig. 2d. Note

that the error initially decreases but then quickly stabilises

as the forecast covariance given by the EnKF converges to

its limiting behaviour.

Next, we applied the adaptive EnKF on the same

simulated data using Qfilt
k and Rfilt

k as our initial guess for

the covariance matrices. In Fig. 2a$c, we compare the true

Q matrix to the initial diagonal Qfilt
k and the final Qfilt

k

estimate produced by the adaptive EnKF. Here, the adap-

tive EnKF recovers the complex covariance structure of the

system noise in a 40-dimensional system. Moreover, the

resulting RMSE, shown by the blue curve in Fig. 2d, shows

a considerable improvement. This example shows that

for Gaussian white noise model and observation errors,

our adaptive scheme can be used with an EnKF to recover

a randomly generated covariance structure even for a

strongly non-linear model.

Figure 2 shows that the improvement in state estimation

builds gradually as the adaptive EnKF converges to the

true values of the covariance matrices Q and R. The speed

of this convergence is determined by the parameter s, which
also determines the accuracy of the final estimates of the

covariance matrices. The role of the stationarity constant s
will be explored in the next example.

Example 4.2. Tracking changing noise levels

To demonstrate the role of s ¼ 1=d and to illustrate the

automatic nature of the adaptive EnKF, we consider a

Lorenz96 system where both Q and R are multiples of the

identity matrix, with R being constant and Q varying in

time. The trace of Q (normalised by the state dimension

N!40) is shown as the black curve in Fig. 3a, where

it is compared to the initial Q (shown in red) and

the estimates of Q produced by the adaptive EnKF with

s ¼ 500 (shown in green) and s ¼ 2000 (shown in blue).

Note that when s is smaller the adaptive filter can move

more quickly to track the changes of the system; however,

when the system stabilises the larger value of s is more

stable and gives a better approximation of the stable value

of Q.

8 T. BERRY AND T. SAUER



Next, we examine the effect of s on the RMSE of the

state estimates. Fig. 3b shows that leaving the value of Qfilt
k

equal to the initial value of Q leads to a large increase in

RMSE for the state estimate, while the adaptive EnKF can

track the changes in Q. We can naturally compare our

adaptive EnKF to an ‘oracle’ EnKF which is given the

exact value of Q at each point in time; this is the best case

scenario represented by the black curves in Fig. 3. Again,

we see that a small s results in a smaller peak deviation

from the oracle, but the higher stationarity constant s
tracks the oracle better when the underlying Q is not

changing quickly. Thus, the parameter s trades adaptivity

(lower s) for accuracy in the estimate (higher s).

Example 4.3. Sparse observation

In this example, we examine the effect of a low-dimensional

observation on the adaptive EnKF. As explained in Section

3, Mehra uses the stationarity of the Kalman filter for

linear problems to build a special adaptive filter for prob-

lems with rank-deficient observations. However, our cur-

rent version of the adaptive EnKF cannot find the full Q

matrix when the observation has lower dimensionality than

the state vector (possible solutions to this open problem

are considered in Section 5). In Section 3, we presented a

special algorithm that parameterised the Q matrix as a

linear combination of fixed matrices reducing the required

dimension of the observation.

To demonstrate this form of the adaptive EnKF, we

use a sparse observation. We first observe 20 sites equally

spaced among the 40 total sites (below we will consider

observing only 10 sites). In this example, the observation

yk is 20-dimensional while the state vector xk is 40-

dimensional, giving a rank-deficient observation. We note

that because the observation is sparse the linearisation, H,

of the observation will have rows which are all zeros.

Solving for Qe
k requires inverting H so we cannot use the

diagonal parameterisation of Qfilt
k , and instead we use the

block-constant parameterisation which allows the Qfilt
k

values to be interpolated from nearby sites. In order to

check that the adaptive EnKF can still find the correct

covariance matrices, we simulated 100000 steps of the

discretised Lorenz96 system observing only 20 evenly

spaced sites. We take the true Q to have a block-constant

structure, and we take the true R to be a randomly

generated symmetric positive-definite matrix as shown in

Fig. 4. As our algorithm will impose a block-constant

structure on Qfilt
k , we chose a block-constant matrix for Q

so that we could confirm that the correct entry values were

recovered.

To test the block-constant parameterisation of the

adaptive EnKF, we chose initial matrices Qfilt
k and Rfilt

k

which were diagonal with entries 0.02 and 0.05, respec-

tively. We used a large stationarity of s ¼ 15000, which

requires more steps to converge but gives a better final

approximation of Q and R, this is why the Lorenz96 system

was run for 100000 steps. Such a large stationarity and

long simulation was chosen to illustrate the long-term

behaviour of the adaptive EnKF. The estimates of Qfilt
k

were parameterised with a 10* 10 block-constant structure

(b!10 using the method from Section 3). In Fig. 4, we

compare the true Q and R matrices to the initial guesses

and the final estimates of our adaptive EnKF. This

example shows that, even in the case of a rank-deficient

observation, the adaptive EnKF can recover an arbitrary

observation noise covariance matrix and a parameterised
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Fig. 3. A Lorenz96 data set with slowly varying Q is produced by defining the system noise covariance matrix Qk as a multiple of the

identity matrix, with the multiple changing in time. (a) Trace of Qk (black) and Qfilt
k for the EnKF (red) compared to the trace of Qfilt

k

(normalised by N!40) for the Adaptive EnKF at stationarity levels s ¼ 500 (green) and s ¼ 2000 (blue). (b) Comparison of the RMSE in

state estimation for the EnKF with fixed Qfilt
k (red) and the Adaptive EnKF with stationarity s ¼ 500 (green) and s ¼ 2000 (blue). The black

curve represents an oracle EnKF which is given the correct covariance matrix Q at each point in time.
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Fig. 4. We apply the adaptive EnKF with a sparse observation by only observing every other site (20 total observed sites) of a Lorenz96

simulation with 100000 steps. The Qfilt
k matrix is assumed to be constant on 4#4 sub-matrices and the true Q used in the simulation is given

the same block structure. (a) First row, left to right: true Q matrix used in the Lorenz96 simulation, the initial guess for Qfilt
k provided to the

adaptive filter, the final Qfilt
k estimated by the adaptive filter, and the final matrix difference Q%Qfilt

k . The second row shows the

corresponding matrices for R; (b) RMSE of Q%Qfilt
k as Qfilt

k is estimated by the filter; (c) RMSE of R% Rfilt
k as Rfilt

k is estimated by the filter;

(d) comparison of windowed RMSE vs. number of filter steps for the conventional EnKF run with the true Q and R (black, lower trace),

and the conventional EnKF run with the initial guess matrices (red, upper trace), and our adaptive EnKF initialised with the guess matrices

(blue, middle trace).
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system noise covariance matrix. Observations in real

applications can be very sparse, so we now consider the

case when only 10 evenly spaced sites are observed. Such a

low-dimensional observation makes state estimation very

difficult as shown by the increased RMSE in Fig. 5

compared to Fig. 4. Even more interesting is that we now

observe filter divergence, where the state estimate trajectory

completely loses track of the true trajectory. Intuitively,

this is much more likely when fewer sites are observed, and

the effect is shown in Fig. 5c by sporadic periods of very

high RMSE. Filter divergence occurs when the variance of

Qfilt
k is small, implying overconfidence in the state estimate

and the resulting forecast. In Fig. 5, this is clearly shown

since filter divergence occurs only when the true matrix Q is

used in the filter, whereas both the initial guess and the

final estimate produced by the adaptive EnKF are inflated.

The fact that the filter diverges when provided with the true

Q and R matrices illustrates how this example pushes the

boundaries of the EnKF. However, our adaptive EnKF

produces an inflated version of the true Q matrix as shown

in Fig. 5 which not only avoids filter divergence, but also

significantly reduces RMSE relative to the initial diagonal

guess matrices. This example illustrates that the breakdown

of the assumptions of the EnKF (local linearisations,

Gaussian distributions) can lead to assimilation error

even when the non-linear dynamics is known. In the

presence of this error, our adaptive EnKF must be

interpreted as an inflation scheme and we judge it by its

performance in terms of RMSE rather than recovery of the

underlying Q.

Example 4.4. Compensating for model error

The goal of this example is to show that the covariance of

the system noise is a type of additive inflation and thus is a

natural place to compensate for model error. Intuitively,

increasing Qfilt
k increases the gain, effectively placing more

confidence in the observation and less on our forecast

estimate. Thus, when we are less confident in our model, we

would naturally want to increase Qfilt
k . Following this line of

thought, it seems natural that if Qfilt
k is sub-optimally small,

the model errors would manifest themselves in poor state

estimates and hence large innovations. In this example,

the adaptive EnKF automatically inflates Qfilt
k based on

the observed innovations, leading to significantly improved

filter performance.

To illustrate this effect, we fixed the model used by the

adaptive EnKF to be the Lorenz96 model from (6) with

N!40 and F!8, and changed the system generating the

data. The sample trajectory of the Lorenz96 system was

created with 20000 time steps. For the first 10000 steps, we

set F!8. We then chose N!40 fixed random values of Fi,

chosen from a distribution with mean 8 and standard

deviation 4. These new values were used for the last 10000

steps of the simulation. Thus, when running our filter we

would have the correct model for the first 10000 steps but a

significantly incorrect model for the last 10000 steps.

We first ran a conventional EnKF on this data and

found that the RMSE for the last 10000 steps was

approximately 180% greater than an oracle EnKF which

was given the new parameters Fi. Next we ran our adap-

tive EnKF and found that it automatically increased the

variance of Qfilt
k in proportion to the amount of model

error. In Fig. 6, we show how the variance of Qfilt
k was

increased by the adaptive filter; note that the increase in

variance is highly correlated with the model error measured

as the percentage change in the parameter Fi at the

corresponding site. Intuitively, a larger error in the Fi

parameter would lead to larger innovations thus inflating

the corresponding variance in Qfilt
k . However, note that

when Qfilt
k was restricted to be diagonal the adaptive filter

required greater increase (shown in Fig. 6b) and gave

significantly worse state estimates (as shown in Fig. 6c).

Thus, when Qfilt
k was not restricted to be diagonal, the

adaptive filter was able to find complex new covariance

structure introduced by the model error. This shows that

the adaptive filter is not simply turning up the noise

arbitrarily but is precisely tuning the covariance of the

stochastic process to compensate for the model error.

This automatic tuning meant that the final RMSE of our

adaptive filter increased less than 15% as a result of the

model error.

Example 4.5. Adaptive version of the LETKF

The goal of this example is to show that our algorithm can

naturally integrate into a localisation scheme. The un-

scented version of the EnKF used in the previous examples

requires large ensemble sizes, which are impractical for

many applications. Localisation is a general technique,

implemented in various forms, that assumes the state

vector has a spatial structure, allowing the Kalman update

to be applied locally rather than globally. Some localisa-

tion schemes have been shown to allow reduced ensemble

size.

The LETKF (Hunt et al., 2004, 2007; Ott et al., 2004) is

a localisation technique that is particularly simple to

describe. The local update avoids inverting large covariance

matrices, and also implies that we only need enough

ensemble members to track the local dynamics for each

local region. For simplicity, we used the algorithm includ-

ing the ensemble transform given in eq. (41) of Ott et al.

ADAPTIVE ENSEMBLE KALMAN FILTERING 11
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Fig. 5. We illustrate the effect of extremely sparse observations by only observing every fourth site (10 total observed sites) of the

Lorenz96 simulation, the Qfilt
k matrix is assumed to be constant on 4#4 sub-matrices and the true Q used in the simulation is given the same

block structure. (a) First row, left to right: true Q matrix used in the Lorenz96 simulation, the initial guess for Qfilt
k provided to the adaptive

filter, the final Qfilt
k estimated by the adaptive filter, and the final matrix difference Q%Qfilt

k . The second row shows the corresponding

matrices for R; (b) RMSE of Q%Qfilt
k as the adaptive EnKF is run; (c) comparison of windowed RMSE vs. number of filter steps for the

conventional EnKF run with the true Q and R (black, lower trace), and the conventional EnKF run with the initial guess matrices (red,

upper trace), and our adaptive EnKF initialised with the guess matrices (blue, middle trace); (d) Enlarged view showing filter divergence,

taken from (c). Note that the conventional EnKF occasionally diverges even when provided the true Q and R matrices. The Qfilt
k found by

the adaptive filter is automatically inflated relative to the true Q which improves filter stability as shown in (c) and (d).
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(2004). We performed the local Kalman update at each site

using a local region with 11 sites (l!5) and we used a

global ensemble with 22 members, compared to 80 en-

semble members used in the unscented EnKF.

Building an adaptive version of the LETKF is fairly

straightforward. A conventional Kalman update is used

to form the local analysis state and covariance estimates.

We design an adaptive LETKF by simply applying our

iteration, given by eq. (5), after the local Kalman update

performed in each local region. We will estimate 40

separate pairs of 11*11 matrices Qi;filt
k and Ri;filt

k . This

implies that some entries in the full Qfilt
k (those far from the

diagonal) have no representatives in these local Qi;filt
k .

Moreover, the other entries in the full Qfilt
k are represented

by entries in several Qi;filt
k matrices. In Fig. 7, we combine

the final estimates of Qi;filt
k into a single 40* 40 Qfilt

k matrix

by averaging all the representatives of each entry. It would

also be possible to form this global Qfilt
k matrix at each

step; however, the LETKF often allows many choices for

forming the global results from the local, and our objective

here is only to show that our adaptive iteration can be

integrated into a localised data assimilation method.

Interestingly, the conventional LETKF requires signifi-

cant inflation to prevent filter divergence. For example, the
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Fig. 6. For the first 10000 filter steps the model is correct and then the underlying parameters are randomly perturbed at each site.

The conventional EnKF is run with the initial true covariances Qfilt
k ¼ Q and Rfilt

k ¼ R; the adaptive EnKF starts with the same values but it

automatically increases the system noise level (Qfilt
k ) to compensate for the model error resulting in improved RMSE. (a) First row, left to

right: true Q matrix used in the Lorenz96 simulation, the initial guess for Qfilt
k provided to the adaptive filter, the final Qfilt

k estimated by the

adaptive filter, and the final matrix difference Q%Qfilt
k . The second row shows the corresponding matrices for R; (b) Model error (black,

dotted curve) measured as the percent change in the parameter F i at each site compared to the relative change in the corresponding

diagonal entries of Qfilt
k found with the adaptive EnKF (blue, solid curve), diagonal (green, solid curve). (c) Results of the adaptive EnKF

(blue) compared to conventional EnKF (red) on a Lorenz96 data set in the presence of model error. The green curve is an adaptive EnKF,

where Qfilt
k is forced to be diagonal and the black curve shows the RMSE of an oracle EnKF which is provided with the true underlying

parameters F i for both halves of the simulation.
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noise variances in Fig. 7 are comparable to Example 4.1;

however, the LETKF often diverges when the diagonal

entries of Qfilt
k are less than 0.05. So, for this example we

use Qfilt
k !Qþ ð0:1ÞI40 and Rfilt

k ¼ R as the benchmark for

all comparisons, since this represents a filter which was

reasonably well-tuned when the true Q and R were both

known. To represent that case when the true Q and R are

unknown, we choose diagonal matrices with the same

average covariance as Qþ ð0:1ÞI40 and R, respectively. For

the conventional LETKF, we form the local Qi;filt
k and Ri;filt

k

by simply taking the 11*11 sub-matrices of Qfilt
k and Rfilt

k

which are given by the local indices. In Fig. 7, we show that

the adaptive LETKF significantly inflates both Qfilt
k and

Rfilt
k , and it recovers much of the structure of both Q and R,

and improves the RMSE, compared to the conventional

LETKF using the diagonal Qfilt
k and Rfilt

k .

While this example shows that our iteration can be used

to make an adaptive LETKF, we found that the adaptive

version required a much higher stationarity (s ¼ 50000 in

Fig. 7). We speculate that this is because local regions can

experience specific types of dynamics for extended periods

which bias the short-term estimates and by setting a large

stationarity we remove these biases by averaging over a

larger portion of state space.We also found that the LETKF

could have large deviations from the true state estimate

similar to filter divergence but on shorter time scales. These

deviations would cause large changes in the local estimates

Qi;filt
k which required us to impose a limit of on the amount
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Fig. 7. We compare the conventional and adaptive LETKF on a simulation of 300000 steps of Lorenz96 (a) First row, left to right:

benchmark Qþ :1I40 matrix where Q is was the matrix used in the Lorenz96 simulation, the initial guess for Qfilt
k provided to the adaptive

filter, the final Qfilt
k estimated by the adaptive filter, and the final matrix difference Q%Qfilt

k . The second row shows the corresponding

matrices for R (leftmost is the true R); (b) the variances from the diagonal entries of the true Q matrix (black, rescaled to range from 0 to 1)

and the those from the final global estimate Qfilt
k produced by the adaptive LETKF (blue, rescaled to range from 0 to 1) (c) Results of the

adaptive LETKF (blue) compared to conventional LETKF with the diagonal covariance matrices (red) and the conventional LETKF with

the benchmark covariances Qfilt
k !Qþ :1I40 and Rfilt

k ¼ R (black).
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an entry ofQi;filt
k could change in a single time step of 0.05. It

is possible that a better tuned LETKF or an example with

lower noise covariances would not require these ad hoc

adjustments. As large inflations are necessary simply to

prevent divergence, this adaptive version is a first step

towards the important goal of optimising the inflation.

5. Discussion and outlook

A central feature of the Kalman filter is that the innova-

tions derived from observations are only used to update

the mean state estimate, and the covariance update does

not incorporate the innovation. This is a remnant of the

Kalman filter’s linear heritage, in which observation,

forecast and analysis are all assumed Gaussian. In any

such scenario, when a Gaussian observation is assimilated

into a Gaussian prior, the posterior is Gaussian and

independent of observation. Equation (2) explicitly shows

that the Kalman update of the covariance matrix is

independent of the innovation.

Any scheme for adapting the Kalman filter to non-linear

dynamics must consider the possibility of non-Gaussian

estimates, which in turn demands a re-examination of

this independence. However, the stochastic nature of the

innovation implies that any attempt to use this information

directly will be extremely sensitive to particular noise

realisations. In this article, we have introduced an aug-

mented Kalman update in which the innovation is allowed

to affect the covariance estimate indirectly, through the

filter’s estimate Qfilt of the system noise. We envision this

augmented version to be applicable to any non-linear

generalisation of the Kalman filter, such as the EKF and

EnKF. Application to the EKF is straightforward, and we

have shown in eq. (7) how to implement the augmented

equations into an ensemble Kalman update.

The resulting adaptive EnKF is an augmentation of the

conventional EnKF, to allow the system and observation

noise covariance matrices to be automatically estimated.

This removes an important practical constraint on filtering

for non-linear problems, since often the true noise covari-

ance matrices are not known a priori. Using incorrect

covariance matrices will lead to sub-optimal filter perfor-

mance, as shown in Section 2, and in extreme cases can

even lead to filter divergence. The adaptive EnKF uses the

innovation sequence produced by the conventional equa-

tions, augmented by our additional equations developed in

Section 3, to estimate the noise covariances sequentially.

Thus, it is easy to adopt for existing implementations, and

as shown in Section 4 it has a significant performance

advantage over the conventional version. Moreover, we

have shown in Section 4 that the adaptive EnKF can adjust

to non-stationary noise covariances and even compensate

for significant modelling errors.

The adaptive EnKF introduced here raises several prac-

tical and theoretical questions. A practical limitation of our

current implementation is the requirement that the rank of

the linearised observationHk is at least the dimension of the

state vector xk. In Section 3, we provide a partial solution

which constrains the Q estimation to have a reduced form

which must be specified in advance. However, in the context

of the theory of embedology, developed in the study by

Sauer et al. (1991), it may be possible to modify our

algorithm to recover the full Q matrix from a low-rank

observation. Embedology shows that for a generic observa-

tion, it is possible to reconstruct the state space using a time-

delay embedding. Motivated by this theoretical result, we

propose a way to integrate a time-delay reconstruction into

the context of a Kalman filter and discuss the remaining

challenges of such an approach.

In order to recover the full system noise covariance

matrix in the case of rank-deficient observation, we pro-

pose an augmented observation formed by concatenating

several iterations of the dynamics,

ŷfk ¼ ĥðxf
kÞ ¼ ðhðxf

kÞ; h
+f ðxf

kÞ; :::; h
+f Mðxf

kÞÞ

which will be compared to time-delayed observation vector

ŷk!ðyk; ykþ1; :::; ykþMÞ: For a generic observation h, when

the system is near an attractor of box counting dimension

N, our augmented observation ~h is generically invertible for

M>2N (Sauer et al., 1991). We believe that this augmented

observation will not only solve the rank-deficient observa-

tion problem, but may also improve the stability of the

Kalman filter by including more observed information

in each Kalman update. However, a challenging conse-

quence of this technique is that the augmented obser-

vation is influenced by both the dynamical noise and

the observation noise realisations. Thus extracting the

noise covariances from the resulting innovations may be

non-trivial.

An important remaining theoretical question is to

develop proofs that our estimated Q and R converge to

the correct values. For R this is a straightforward claim,

however the interpretation of Q for non-linear dynamics is

more complex. This is because the Kalman update equa-

tions assume that at each step the forecast error distribu-

tion is Gaussian. Even if the initial prior is assumed to be

Gaussian, the non-linear dynamics will generally change

the distribution, making this assumption false. Until

recently, it was not even proved that the EnKF tracked

the true trajectory of the system. It is likely that the choice

of Qfilt
k for an EnKF will need to account for both the true

system noise Q as well as the discrepancy between the true

distribution and the Gaussian assumption. This will most

likely require an additional increase in Qfilt
k above the

system noise covariance Q.
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We believe that the eventual solution of this difficult

problem will involve computational approximation of the

Lyapunov exponents of the model as the filter proceeds.

Such techniques may require Qfilt
k to enter non-additively

or even to vary over the state space. Improving filter

performance for non-linear problems may require reinter-

pretation of the classical meanings of Q and R in order to

find the choice that leads to the most efficient shadowing.

In combination with the results of Gonzalez-Tokman and

Hunt (2013), this would realise the long-sought non-linear

analogue of the optimal Kalman filter.
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