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In computer simulations of deterministic dynamical systems, floating-point rounding errors and other
truncation errors contaminate the simulation results. We investigate the effect of computations using
IEEE standard double precision arithmetic on inference of natural measure of chaotic attractors.
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1. Introduction

For difference equations with bounded, non-periodic solutions, the natural measure of the

equation is a useful descriptor of the geometry of the solution. When it exists, it catalogs the

density of typical bounded solutions of the equation, and can be used to characterize its

dynamics.

By their nature, non-periodic solutions evade easy description. Computer methods are

usually needed. In case of chaotic solutions, it is futile to try to approximate a particular

solution for a large number of steps using floating-point computation, due to sensitive

dependence on initial conditions. However, even if individual trajectories are unstable, a

compact attractor defined as the totality of a number of solutions may be stable. Given that it

is mathematically stable, we ask whether it is computable.

In this article we discuss the practical and theoretical obstructions to approximating the

natural measure on a computer by creating long trajectories. In particular, we want to know

whether the small errors made in computer arithmetic lead to correspondingly small errors in

natural measure, or whether they can lead to disproportionately poor estimates.

To some extent this is a question about the sensitivity of natural measure to small

perturbations, and more precisely the sensitivity to rounding errors made in machine

computation. For example, it is clear that near global bifurcation points, natural measure will

be sensitive to small changes. We begin by investigating examples of this type, and proceed

to an example where there is no nearby bifurcation. In both cases, we find examples of

extreme failure of computer arithmetic to approximate natural measure, in that the errors are

many orders of magnitude greater than the arithmetic rounding errors.
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Let S be a Borel set, f a discrete map on R n. The natural measure m is a probability measure

satisfying,

mðSÞ ¼ asymptotic proportion of trajectory in S

for almost every initial condition. The natural measure may not exist, but if it does it is

f-invariant, i.e.

mðf 21ðSÞÞ ¼ mðSÞ:

The properties of natural measures are a key topic of ergodic theory. The Frobenius-Perron

operator (see [7] for an introduction) can be used to determine the measure in many cases.

In this article we consider only the most elementary approach of computing long trajectories

of typical initial conditions.

Example 1 Bernoulli map xnþ1 ¼ f ðxnÞ ¼ 2xnðmod1Þ:

The natural measure is the constant density rðxÞ ¼ 1 on [0,1]. Almost every initial

condition in the sense of Lebesgue measure on [0,1] will map out the uniform probability

density r ¼ 1: The measure zero set of exceptions includes x0 ¼ 0; which generates the

atomic measure concentrated at 0 instead of the natural measure. Also in this category are all

initial conditions that are expressible as a finite binary expansion.

Example 2 Logistic map xnþ1 ¼ f ðxnÞ ¼ 4xnð12 xnÞ.

The map f is plotted in figure 1(a). It can be shown (for example, see [1]) that the natural

measure has density rðxÞ ¼ 1=p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð12 xÞ

p
: For a subinterval [a, b] of the unit interval the

measure is

mð½a; b�Þ ¼
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a
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Almost every initial condition traces out the measure (1), whose density is shown in figure 2.

Exceptional initial conditions include x0 ¼ 0; 1=2; and 1, which generate the atomic measure

at 0.

Although the naturalmeasure for these two examples iswell known, it is rare to have explicit

expressions in terms of elementary functions. More typically, computer simulation is needed.

The most obvious way to compute a natural measure is to calculate a long trajectory and use it

to produce a histogram showing the density of points in each area. Since the natural measure is

Figure 1. (a) The logistic equation xnþ1 ¼ f ðxnÞ ¼ 4xnð1 2 xnÞ: (b) Magnification of the double precision version �f
of (a). eps represents 2252 < 2:2 £ 10216:
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an asymptotic invariant, only the tail of the trajectory is relevant, and often reasonable

approximations can bemade by computing a trajectory and throwing away the initial transient.

However, using floating-point computation to approximate natural measure immediately

raises a dilemma. Computer arithmetic systems have a finite number of states. (There are

about 1016 double precision numbers between 0 and 1.) Due to finiteness and the

determinism of computer arithmetic, every computer trajectory is periodic, unlike true

trajectories. Even so, if a reasonable approximation to natural measure can be made with a

long-period computer trajectory, we may be satisfied for practical purposes.

The main question of this article is to determine how reliably the correct natural measure

can be approximated in double precision computer arithmetic. We will find it is possible, in

an example like the logistic equation, to reach complete failure in this approximation.

Because the IEEE-754 double precision arithmetic protocol [5] has become the de facto

standard for scientific computing, it is enlightening to investigate as a case study what

happens when the logistic equation is run for long trajectories, in hopes of approximating the

natural measure. As we explain below, (i) over 2/3 of initial conditions in [0,1] eventually

iterate under the IEEE-754 version of the logistic equation to a single periodic solution, of

period 56 38 349 and (ii) another 16% of initial conditions eventually iterate to the zero fixed

point solution. The former initial conditions lead to a trajectory that approximates the natural

measure (1) rather well. The latter initial conditions fail catastrophically.

The logistic map is special in that it sits at a bifurcation value of its parameter. We

investigate its double precision characteristics because of its ubiquity in discussion of one-

dimensional maps, but it is not typical for the purpose of natural measure since the attractor

touches the basin boundary, making it very sensitive to perturbations. After studying the

logistic example we show an additional second-order equation that fails to reproduce a good

double precision approximation in a more robust way.

2. Computing measure in double precision arithmetic

After several years of conflicting standards, scientific computation has largely settled to a

single computer arithmetic system, IEEE-754 double precision. Most floating-point

compilers and computer software systems built on them (for example, Matlab) will give

precisely reproducible results under this standard.

Figure 2. (a) Theoretical natural density of logistic equation. (b) Histogram of period 56,38,349 orbit. Both panels
are plotted with step size 0.01. Differences are barely perceptible at the scale of this figure. Under double precision
calculation, the trajectory of most initial conditions will yield (b) as the computed natural measure.
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In this arithmetic system, each double precision machine number is represented as

^1:bbb. . .b £ 2e ð2Þ

where the leftmost 1 is assumed, and where there is a 52 binary digit mantissa to the right of

the radix. A total of 11 bits are assigned to store the integer exponent e, and 1 bit for the sign.

The unit roundoff, or machine epsilon of the number system, is the distance between 1 and

the next largest double precision number, which is 2252. The default rounding protocol for

IEEE-754 double precision is called “rounding to nearest”, and does exactly that after each

arithmetic operation: rounds to the nearest 52-bit double precision number. There is a

deterministic procedure for rounding in case of a tie. We will often denote the double

precision floating-point version of a real number x by �x; and informally call it a machine

number.

Since the two examples discussed above have known natural measures, it will be helpful to

investigate how successful computer arithmetic versions of the difference equations are in

reproducing the correct measure. Example 1 is extremely special and not very representative

because it is essentially multiplication by 2, the base of the number system being used for

computation.

Example 1 Bernoulli map xnþ1 ¼ f ðxnÞ ¼ 2xnðmod1Þ:

Let �f denote the machine version of the map. Multiplication by 2 just changes the integer

exponent, and has no effect on the mantissa. The modulo operation, on the other hand,

effectively shifts the mantissa to force the exponent to be 0, and chops off everything to the

left of the radix. Then the number must be rejustified, changing the exponent to put the

leftmost 1 on the left of the radix. For any machine number greater than machine epsilon, at

least one significant digit will be lost on each iteration, so it is clear that after 52 iterations of
�f; the computer trajectory will be moved to machine 0, where it will stay on further iterations.

The computed natural measure, on the basis of this trajectory, will converge to the atomic

measure at 0. This disagrees with the correct natural measure.

This is an example of an extremely unsuccessful measure calculation. It occurs due to the

special connection of the map with regard to the binary number system on which computer

arithmetic is based.

Example 2 Logistic map xnþ1 ¼ f ðxnÞ ¼ 4xnð12 xnÞ.

This example has less resonance with the number system, and is fairly typical for a simple

dynamical system in terms of the arithmetic. However, it is special dynamically, in that it lies

at a crisis, or bifurcation value of the map parameter l ¼ 4: For this parameter, small

perturbation noise added to the map near x ¼ 1=2 will move a trajectory out of the unit

interval, and towards negative infinity.

The logistic example shows the sometimes counter-intuitive effects of machine rounding

as compared with random noise. Although we will see that the natural measure will be

incorrectly computed by many long trajectories, it happens in a somewhat surprising way.

For example, machine rounding error cannot move a trajectory outside of the interval [0,1],

as the first of the following facts shows. Let �f denote the machine version of the logistic map.

Fact 1. Let �x be a machine number in [0,1]. Then 0 # �fð�xÞ # 1:

Proof First note that since all operands are nonnegative, the result of computing the equation

is nonnegative. To show the upper bound, define �y ¼ �x2 1=2: Because double precision
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numbers are expressed in base 2,

4�xð1 2 �xÞ ¼ 4
1

2
þ �y

� �
1

2
2 �y

� �
¼ ð1þ 2�yÞð1 2 2�yÞ

¼ 1þ 2�y2 2�y2 ð2�yÞ2 ¼ 1 2 ð2�yÞ2 # 1:

Curiously, the analogue of Fact 1 fails for other maps conjugate to the standard logistic

map. For example, consider gðxÞ ¼ 2:5xð8=52 xÞ on the interval [0,8/5]. One checks that g is

conjugate to the above logistic map f by the change of coordinates x! 8x=5: The

corresponding fact for this map, that 0 # �x # 8=5 implies that 0 # �gð�xÞ # 8=5, is false.

The reason is that 2:5½ð0:8þ �yÞð0:82 �yÞ� # 1:6 does not hold for all double precision

numbers, including for example �y ¼ 0! (This can be easily verified by computing 2:5ð0:8 £

0:8Þ2 1:6 in Matlab, or in a C program using the “double” data type.) Therefore, any

trajectory whose initial condition is sufficiently close to 0.8 will diverge to negative infinity.

This positive measure set of initial conditions clearly fails to approximate the true natural

measure. A

Although the logistic map appears to be “saved” by the luck of computer arithmetic, in fact

there are other problems.

Fact 2.Approximately 16% of machine numbers �x in [0,1] eventually map to the trajectory

0 under �f:

Figure 1(b) shows the difficulty—there is a small but positive length neighborhood around

�x ¼ 1=2 where �f maps to exactly 1, and following that maps to exactly 0 for all further steps.

For example, the floating-point version �x of x ¼ 2=13 satisfies

�f1 71 537ð�xÞ <
1

2
þ 3 £ 1029;

and so according to figure 1(b), �f kð�xÞ ¼ 0 for k $ 1 71 539: Since only a Lebesgue measure 0

set of initial conditions has the atomic measure at 0 in theory, this shows a breakdown of the

ability of the simulation to compute natural measure.

On viewing the figure 1(b), one might wonder why Fact 2 doesn’t state 100% instead of

16%. The true natural measure should bounce the state around until it finds the small

subinterval ½1=22 3 £ 1029; 1=2þ 3 £ 1029�; and then exit to 0.

Moreover, we can make a prediction for how long this should take. According to the

known natural measure (1) of the logistic map, the probability of landing in the subinterval

on a typical iteration should be

p ¼ Cð1=2 þ 3 £ 1029Þ2 Cð1=2 2 3 £ 1029Þ < 3:82 £ 1029;

where CðxÞ ¼ 2=p arcsin
ffiffiffi
x

p
is the antiderivative of the natural density. After 108 iterations,

say, the probability that a trajectory maps to 0 would be 12 ð12 pÞ108

< 0:32; and the rest

of the initial conditions would just take a little longer. However, something else happens first,

keeping the trajectory from moving according to the true natural measure:

Fact 3. The trajectories of over two-thirds of the initial conditions in [0,1] iterate to a

single periodic orbit of �f:

In addition to the fixed orbit at 0, there is a period 56 38 349 orbit that claims over two-

thirds of all initial conditions. This orbit does not enter the interval around 1/2 shown in
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figure 1(b). A histogram of the orbit in the interval [0,1] is shown in figure 2(b). It is very

close but not equal to the correct histogram implied by (1). The two-thirds of initial

conditions that iterate to this orbit will, after an initial transient, generate the histogram figure

2(b) instead of the correct histogram. Although incorrect, it is an improvement on the atomic

measure at 0. There is another orbit of period 1 46 32 801 that traps over 10%. More than 95%

of initial conditions terminate in one of these three periodic orbits.

Since the double precision numbers form a finite set, every computer trajectory will be

eventually periodic. However, given the fact that there are 252 < 1016 distinct machine

numbers between 0 and 1, it is rather surprising that the periods are so low. Empirical

evidence supports the following:

Conjecture For all �x in [0,1], �f20 00 00 000ð�xÞ belongs to a periodic orbit of the IEEE double

precision logistic map �f:

This is consistent with the work of Grebogi, Ott, Yorke [4] and Beck and Roepstorff [3],

which predicts that the expected length of periodic computer orbits for a one-dimensional

attractor should be on the order of the reciprocal square root of machine epsilon, or 108.

The details of the double precision version of the logistic equation are not important. They

will of course differ in any other system of computer arithmetic, for example the extended

precision system with 80-bit mantissa that may become a future standard. The purpose of the

example is to show the general outline of what to expect for a well-known example on a

typical floating-point arithmetic system.

The logistic equation is still not very typical because it lacks robustness. Since the

attracting set, the interval [0,1], intersects its basin boundary at 0 and 1, it is not surprising

that any small error will cause problems in computing the natural measure. Next we illustrate

a more subtle failure. Even when attractors are well within the basin, and are near no

bifurcations, it may be impossible for long computer trajectories to produce faithful

approximations of the natural measure.

3. A robust, sensitive second-order equation

A third example is a second-order equation, apparently far from bifurcations, whose double

precision trajectories give natural measure approximations that are far from the correct

measure.

Example 3 Define the second-order equation

xnþ1 ¼ a sinpxn þ sin
xn

a
2 sinpxn21

� �
b cospxn

h i
ð3Þ

where a, b are constants. This equation is a variant of an example in [8], and is a second-order

extension of the first-order equation

xnþ1 ¼ a sinpxn; ð4Þ

which for a . 1 is globally convergent to the chaotic attractor [ 2 a,a].

Figure 3(a) shows a 2000-point trajectory in the ðxn; xnþ1Þ plane computed with no error,

setting a ¼ 1:1; b ¼ 1:82: Figure 3(b) shows the same computation of (3) using IEEE double

precision. These are both representative trajectories; changing initial conditions or running
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longer trajectories would show the same general picture. The correct natural measure, shown

in panel (a), is supported on the curve (4), while the one in panel (b), computed in double

precision, is clearly incorrect. The spray of points off the theoretical attractor is macroscopic

phenomena brought up through 16 orders of magnitude from microscopic causes. This

example is of course specially constructed to emphasize this problem, but is not otherwise

dynamically unusual, and the behavior persists through changes in both parameters a and b.

We emphasize that the extra points in figure 3(b) are persistent, not transient phenomena.

This is an extreme case of a phenomena called bubbling [2].

To understand the intuition behind the construction of Example 3, note that for points near

the curve (4) the approximation

xnþ1 2 a sinpxn ¼ sin
xn

a
2 sinpxn21

� �
b cospxn

h i
<

xn

a
2 sinpxn21

� �
b cospxn

can be made. The parameter b is adjusted so that for points on the curve, the multiplicative

mean of b cospxn is less than a. For the theoretical attractor, the distance of points from the

curve decreases exponentially to zero. Since the natural measure is an asymptotic limit, it is

supported entirely on the curve. For the double precision arithmetic attractor, on the other

hand, small rounding errors of size < 2252 in the distance are multiplied by sequences of

b cospxn that despite having multiplicative mean being less than a, occasionally have

subsequences that multiply the distance to a macroscopic size, as seen in figure 3(b).

Since solutions to this equation cannot be computed even to a single correct significant

digit by double precision arithmetic, the question remains how figure 3(a) was made. It turns

out that the mathematically equivalent version

xnþ1 ¼ a sinpxn þ sin ðxn 2 a sinpxn21Þ
b

a
cospxn

� �
ð5Þ

of (3) eliminates the spray of incorrect points through fortuitous rounding error cancellation.

Independent of the present discussion, it is interesting that the two versions (3) and (5) of a

stable attractor, which are shown to be identical by elementary algebra, disagree

macroscopically due to their different handling of size 10216 errors.

Examples like the ones treated in this article throw into question conclusions made from

computer simulation of long trajectories of dynamical systems and difference equations.

When chaos is involved, faithfulness of computer trajectories on an individual basis is not

expected, due to sensitive dependence on initial conditions. However, stability of the attractor

Figure 3. (a) Theoretical natural density of second-order equation (3). (b) Computed natural density from typical
trajectory. Each panel shows a single 2000-point trajectory, after deleting the transient.
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itself, as catalogued by natural measure, may still be hoped for. Example 3, in particular,

shows an error magnification of 16 orders of magnitude on an ongoing basis, that cannot be

attributed to any simple bifurcation or basin boundary crossing. For this example, double

precision computer trajectories are not representative of the correct natural measure. It is not

known whether alternate computational methods of inferring natural measure, such as those

based on the Frobenius-Perron operator [6], suffer from the same difficulties.
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