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Consider a difference equation which takes the k-th largest output of m functions of the
previousm terms of the sequence. If the functions are also allowed to change periodically
as the difference equation evolves, this is analogous to a differential equation with
periodic forcing. A large class of such non-autonomous difference equations are shown to
converge to a periodic limit, which is independent of the initial condition. The period of
the limit does not depend on how far back each term is allowed to look back in the
sequence, and is in fact equal to the period of the forcing.
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1. Introduction

Recently, there has been substantial interest in max-type difference equations [1–9,
14–18]. For the equation

xn ¼ max
1#i#M

{f iðxn2iÞ}; ð1Þ

with initial sequence ðx1; . . . ; xMÞ, it has been shown [11] that if the fi are contractive, then
all solutions converge to a fixed point, i.e.

lim
n!1

xn ¼ r*:

Moreover, the fixed point r* can be identified as the maximum of the individual fixed
points

r* ¼ max
1#i#M

{ri};

where ri is the unique fixed point ri ¼ f iðriÞ.
In view of this result, it is reasonable to ask about convergence in the periodically

forced case. Assume that f 1; . . . ; f M vary periodically with the discrete time variable n.
We will investigate the limiting behaviour of the non-autonomous difference equation

xn ¼ max
1#i#M

{f iðxn2i; nÞ}; ð2Þ

where f i : R £N! R are contractions with respect to the first variable and P-periodic
with respect to the second. That is, we assume there exists a , 1 such that

j f iðx; nÞ2 f iðy; nÞj # ajx2 yj; ð3Þ
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for all i, n and f iðx; nþ PÞ ¼ f iðx; nÞ for all n. We think of P as the forcing period andM as
the memory length. We will show below that solutions of the contractive, P-periodic
difference equation (2) converge to a unique periodic orbit with period P, for all initial
sequences.

In [10], rank-type equations were proposed as a generalization of max-type equations.
Consider the difference equation

xn ¼ k-rank
1#i#M

{f iðxn2iÞ}; ð4Þ

where k-rank denotes the kth largest value. It was shown in [10] that with the same
contractiveness hypotheses, solutions converge to r* ¼ k-rank{ri}, the kth largest of the
individual fixed points. In this paper, we further generalize this result to the periodically
forced case. Our main result is the following:

Theorem 1.1. Let f 1; . . . ; f M : R £N! R be contractions with respect to the first
variable and P-periodic with respect to the second. Let 1 # k # M. Then, for any initial
sequence, the solution of the difference equation

xn ¼ k-rank
1#i#M

{f iðxn2i; nÞ}; ð5Þ

is asymptotically periodic with period P.

Unlike the autonomous case, in general, we do not know how to find a formula for the
periodic solution in terms of the individual dynamics of the fi. In the fourth section of this
article, we relate some partial progress in this direction.

The conclusion of Theorem 1.1 fails if a $ 1 in (3), even if k ¼ P ¼ 1, the
autonomous max-type case [7]. We mention two well-known examples where the
condition on a does not hold.

Example 1.2. Consider the difference equation

xn ¼ max{2 xn21;2xn22}:

Although this is an autonomous max-type equation ðk ¼ P ¼ 1Þ, it is easy to check
that all solutions have period 3 – P. In this example, a ¼ 1, and Theorem 1.1 does
not apply.

Example 1.3. The first-order difference equation

xn ¼ max{12 2xn21; 2xn21 2 1}

has bounded, non-periodic (chaotic) solutions for almost every initial condition x0
between 0 and 1. In this example, a ¼ 2. As a dynamical system, this example is the
upside-down tent map.

Example 1.4. For a straightforward application of Theorem 1.1, fix positive integers P and
k # M, and denote by A and B two P £M matrices of real numbers, where the entries
jAijj , 1. Define the difference equation

xn ¼ k-rank{A!n1xn21 þ B!n1;A!n2xn22 þ B!n2; . . . ;A!nMxn2M þ B!nM}; ð6Þ
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where !n ; 1þ ðn2 1modPÞ. Thus, the coefficients cycle through the rows of the
matrices A and B, forcing the equation with period P. Theorem 1.1 implies that all
solutions converge asymptotically to a period P solution.

Example 1.5. Let A be a P £ M matrix of positive real numbers and consider the
recurrence

xn ¼ max A!n1x
a1

n21; . . . ;A!nMx
am
n2M

! "
; ð7Þ

where 21 , ai , 1 and !n ¼ 1þ ðn2 1modPÞ. It follows from Theorem 1.1 (applied to
yn ¼ ln xn) that the recurrence converges to a unique period P orbit. Note that this result is
independent of the memory length M. The periodicity of the limit only depends on the
periodicity of the forcing.

In sufficiently simple cases, we can say more about the convergent solution. In Section 4,
we further pursue the special case M ¼ P ¼ 2 of (7). A closed form for the globally
attracting solution of (7) is given by

lim
n!1

x2n ¼ max A12A
ða1=12a2Þ
21 ;A

a1=12a2
1ð Þ

11 A
1=12a2

1ð Þ
12 ;Að1=12a2Þ

22

n o

lim
n!1

x2nþ1 ¼ max A11A
ða1=12a2Þ
22 ;A

a1=12a2
1ð Þ

12 A
1=12a2

1ð Þ
11 ;Að1=12a2Þ

21

n o
:

(See Example 4.5 for details.) The complexity of this solution contrasts with the simplicity
of the case P ¼ 1, which is simply xn !max A

ð1=12aiÞ
i

n o
(see [11–13]).

Example 1.6. Let A1;A2;A3 be real numbers less than 0.15, B1;B2;B3 be arbitrary
real numbers and P be a positive integer. Then, it follows from Theorem 1.1 that every
solution of

xn ¼ median eA1 sinðB1þ2pn=PÞ2x2n21 ; eA2 sinðB2þ2pn=PÞ2x2n22 ; eA3 sinðB3þ2pn=PÞ2x2n23

n o
;

is asymptotically periodic with period P. Note that the median is synonymous with 2-rank.
It is easily checked that the condition Ai , 0:15 , ð1=2Þ2 ðln 2=2Þ implies that the
functions f iðxÞ ¼ expðAi sinðBi þ 2pn=PÞ2 x2Þ are contractive, so the convergence is
implied by Theorem 1.1.

Our main convergence result Theorem 1.1 will be proved as a special case of a more
general result, Corollary 3.5, which applies to a class of difference equations called
sup-contractive. The next example is covered under the sup-contractive hypothesis, which
is more general than a fixed k-rank.

Example 1.7. Let f 1; . . . ; f M : R! R be contractions. Let P # M be a positive integer and
denote !n ¼ 1þ ðnmodPÞ. We will show in Example 3.7 that every solution of

xn ¼
1

2
max
1#i#M

{f iðxn2iÞ}2 !n-rank
1#i#M

{f iðxn2iÞ}
# $

;

is asymptotically periodic with period P.
In Section 2 below, we develop some facts about functions that are contractive in the

sup-norm. An important result is Lemma 2.4, which will imply that (5) is sup-contractive.
In Section 3, we show that the general class of sup-contractive recurrence equations
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converges as desired. Finally, in Section 4, we return to the max-type equation (2), and
find the value of the asymptotically convergent periodic orbit for some specific values of
M and P.

2. Sup-contractive functions

The convergence proofs in the next section apply to a wide class of functionsG : Ra ! Rb,
which includes compositions of contractive functions as in (3) with the max and k-rank
functions. We will be interested in the operator norm of functions G, where the norm used
is the sup-norm. Namely, assume there exists L $ 0 such that

kGðxÞ2 GðyÞk1 # Lkx2 yk1;

for all x; y [ Ra. We can think of L as the Lipschitz constant ofG in the sup-norm, and will
refer to it as the sup-Lipschitz constant in the following sections. When L ¼ 1, we will call
G sup-non-expansive and when L , 1 we will call G sup-contractive. Note that a
contraction on R is sup-contractive since the infinity norm on R is simply the absolute
value.

Example 2.1. Let G : RM ! R be the function GðxÞ ¼ ckxkp, where c . 0. Since

jckxkp 2 ckykpj ¼ ckjxkp 2 kykpj # ckx2 ykp # cM 1=pkx2 yk1;

G is sup-non-expansive when c ¼ M21=p and sup-contractive when c , M21=p.

Example 2.2. For a fixed z [ RM , define G : RM ! R by GðxÞ ¼ zTx. Since

jzTx2 zTyj ¼ jzT ðx2 yÞj ¼
XM

i¼1

jzikxi 2 yij # kx2 yk1
XM

i¼1

jzij ¼ kx2 yk1kzk1;

G is sup-non-expansive when kzk1 ¼ 1, and sup-contractive when kzk1 , 1.

Example 2.3. For 1 # k # M, let Rk : R
M ! R be the function that returns the k-th largest

entry of the M-dimensional input vector. Customarily, Rk is called the ‘k-rank’ function.
It includes the max ðk ¼ 1Þ and min ðk ¼ MÞ as special cases. Not surprisingly, the max
function is sup-non-expansive. Somewhat more surprising is that this property holds for all
k, as shown in the next lemma.

Lemma 2.4. The k-rank function Rk is sup-non-expansive.

Proof. Let x; y [ RM , and assume, without loss of generality, that RkðyÞ # RkðxÞ. Set yrðiÞ
be the i-th largest component of y and let xsðiÞ be the i-th largest component of x. Then,

yrð1Þ # yrð2Þ # · · · # yrðkÞ ¼ RkðyÞ # RkðxÞ ¼ xsðkÞ # xsðkþ1Þ # · · · # xsðMÞ:

Now, examine the list of natural numbers I ¼ ðrð1Þ; . . . ; rðkÞ; sðkÞ; . . . ; sðMÞÞ. We note
that I has lengthM þ 1 but each entry is chosen from {1; . . . ;M}. Thus, by the pigeonhole
principle, at least two of the listed numbers must be the same. Note that all the
rð1Þ; . . . ; rðkÞ are distinct and all the sðkÞ; . . . ; sðMÞ are distinct, thus there must be some
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1 # i # k and some k # j # M such that rðiÞ ¼ sðjÞ ¼ t. Therefore,

yt ¼ yrðiÞ # RkðyÞ # RkðxÞ # xsðjÞ ¼ xt;

which implies that

jRkðxÞ2 RkðyÞj ¼ RkðxÞ2 RkðyÞ # xt 2 yt ¼ jxt 2 ytj # kx2 yk1:

Since the absolute value is the infinity norm on R, Rk is sup-non-expansive. A

The sup-Lipschitz constants are multiplied under composition, based on the next
lemma.

Lemma 2.5. Assume f 1; . . . ; f k : R
M ! R have sup-Lipschitz constants less than L1 and

f : Rk ! R has sup-Lipschitz constant L2, then gðxÞ ¼ f ðf 1ðxÞ; f 2ðxÞ; . . . ; f kðxÞÞ has
sup-Lipschitz constant no larger than L1L2.

Proof. Let x; y [ RM then

jgðxÞ2 gðyÞj ¼ j f ðf 1ðxÞ; . . . ; f kðxÞÞ2 f ðf 1ðyÞ; . . . ; f kðyÞÞj
# L2 max

1#i#k
j f iðxÞ2 f iðyÞj # L1L2kx2 yk1:

A

Note that if f is sup-contractive, and all fi are sup-non-expansive then g is
sup-contractive. Similarly, if f is sup-non-expansive, and all fi are sup-contractive then g is
sup-contractive. Finally, the next lemma shows that if we bundle together functions into a
vector, the sup-Lipschitz constant cannot grow.

Lemma 2.6. Assume f 1; . . . ; f k : R
M ! R have sup-Lipschitz constants at most L.

Then, f : RM ! Rk defined by

f ðxÞ ¼ ðf 1ðxÞ; f 2ðxÞ; . . . ; f kðxÞÞ;

has sup-Lipschitz constant at most L.

Proof. Let x; y [ RM , then

kf ðxÞ2 f ðyÞk1 ¼ max
1#i#k

{j f iðxÞ2 f iðyÞj} # Lkx2 yk1:
A

Note that if k ¼ M and L , 1, then in fact f is a contraction on RM, so bundling
functions is a way to build contractions. Finally, note that these statements could be
generalized to allow fi to be vector valued but this is not necessary for what follows.

3. General case

We now return to our original recurrence equation

xn ¼ k-rank
1#i#M

{f iðxn2i; nÞ};

under the assumption that each f i : R! R is a contraction. Since k-rank is sup-non-
expansive by Lemma 2.4, and each fi is sup-contractive, the composition of the two
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is sup-contractive by Lemma 2.5. This is a special case of the equation

xn ¼ Gnðxn21; . . . ; xn2MÞ;
where G1; . . . ;GP are any sup-contractive functions and GnþP ¼ Gn for all n. Setting
s ¼ PM, we will first show that for all initial conditions, the limit is periodic of period s
by a contraction mapping argument. We will then use the P-periodicity of Gn to show
that the limit is actually periodic of period P.

With slight abuse of notation, we can consider Gn as a function of all s variables,
although it depends only on the first M

xn ¼ Gnðxn21; . . . ; xn2sÞ ¼ Gnðxn21; . . . ; xn2MÞ; ð8Þ
where Gnþs ¼ GnþMP ¼ Gn for all n. We define

!xn ¼ ðxnsþ1; . . . ; xnsþsÞ;
and let !x0 be the initial condition. We want to show that we can write

!xnþ1 ¼ !Fð!xnÞ;
where !F : Rs ! Rs is a contraction in the infinity norm on Rs. Let !y ¼ ðy1; . . . ; ysÞ and
define the following functions for k ¼ 1; . . . ; s.

F1ð!yÞ ¼ G1ðys; ys21; . . . ; y1Þ
Fkð!yÞ ¼ GkðFk21ð!yÞ; . . . ;F1ð!yÞ; ys; ys21; . . . ; ykÞ:

Note that this is an inductive definition since Fk depends on F1; . . . ;Fk21. Finally, we
define

!Fð!yÞ ¼ ðF1ð!yÞ; . . . ;Fsð!yÞÞ: ð9Þ
The recursive nature of the definition of F̄ requires the following lemma to show that F̄
encapsulates the evolution of the sequence {xn}.

Lemma 3.1. Let G1; . . . ;Gs : R
s ! R and let {xi} be defined by (8). Define !F by (9).

Then, for all n, we have !xnþ1 ¼ !Fð!xnÞ.

Proof. This is equivalent to showing that xnsþsþk ¼ Fkð!xnÞ for k ¼ 1; . . . ; s which is
equivalent to

Fkð!xnÞ ¼ Gkðxnsþsþk21; . . . ; xnsþkÞ:

Note that when k ¼ 1, we have

F1ð!xnÞ ¼ G1ðxnsþs; . . . ; xnsþ1Þ ¼ xnsþsþ1;

by definition of F1 and G1. Then, for 2 # k # s, we can proceed by induction. Assuming
xnsþsþ!k ¼ F !kð!xnÞ for all !k , k, we have

Fkð!xnÞ ¼ GkðFk21ð!xnÞ; . . . ;F1ð!xnÞ; xnsþs; . . . ; xnsþkÞ
¼ Gkðxnsþsþk21; . . . ; xnsþsþ1; xnsþs; . . . ; xnsþkÞ ¼ xnsþsþk;

which completes the proof. A

Now that we have defined !F, we need to show that it is a contraction.
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Theorem 3.2. Let G1; . . . ;Gs : R
s ! R be sup-contractive and define !F as in (9).

Then, !F : Rs ! Rs is a contraction with respect to the infinity norm.

Proof. By Lemma 2.6, it suffices to show that each Fi is sup-contractive. Note that the
projection function pið!yÞ ¼ yi is sup-non-expansive since

jpið!xÞ2 pið!yÞj ¼ jxi 2 yij # k!x2 !yk1:

Thus, F1 ¼ G1ðpsð!yÞ; . . . ;p1ð!yÞÞ is sup-contractive by Lemma 2.5, because G1 is sup-
contractive and pi is sup-non-expansive. For 1 , i # s, we proceed by induction. Assume
Fj is sup-contractive for all j , i, then

Fið!yÞ ¼ GiðFi21ð!yÞ; . . . ;F1ð!yÞ;psð!yÞ;ps21ð!yÞ; . . . ;pið!yÞÞ:

So, Fi is a composition of the sup-contractive function Gi with sup-contractive functions
Fi21; . . . ;F1 and sup-non-expansive projection functions ps; . . . ;pi. Thus by Lemma 2.5,
Fi is sup-contractive, which completes the induction and thus shows that !F is a
contraction. A

Corollary 3.3. Let G1; . . . ;GP : RM ! R be sup-contractive and let GnþP ¼ GP for all
n. Given an initial condition ðx1; . . . ; xMÞ , let

xn ¼ Gnðxn21; . . . ; xn2MÞ;

then xn converges to a unique PM-periodic orbit independent of initial conditions.

Proof. By Theorem 3.2, we can construct a contraction mapping !F : Rs ! Rs such that
!xnþ1 ¼ !Fð!xnÞ. Thus, by the contraction mapping theorem, !F has a unique fixed point
x* [ Rs and for any !x0 [ Rs we have limn!1 !xn ¼ x *. A

Note that s may not be the prime period (smallest possible period). So, we now show
that in fact xn must be asymptotically periodic of period P.

Theorem 3.4. Let G1; . . . ;GP : RM ! R be sup-contractive and define !F as in (9). Let x *

be the unique fixed point of !F. Then, x * is periodic of period P.

Proof. Define a shift operator by Sð!xnÞ ¼ ðxnsþ1þP; . . . ; xnsþsþPÞ. We will use the fact that
Gi is actually periodic of period P to show that the function S commutes with !F. Note that

Sð !Fð!xnÞÞ ¼ Sð!xnþ1Þ ¼ ðxnsþsþ1þP; . . . ; xnsþsþsþPÞ
!FðSð!xnÞÞ ¼ !Fðxnsþ1þP; . . . ; xnsþsþPÞ:

First, we examine the first component of !FðSð!xnÞÞ

ð !FðSð!xnÞÞÞ1 ¼ G1ðxnsþsþP; . . . ; xnsþ1þPÞ
¼ G1þPðxnsþsþP; . . . ; xnsþ1þPÞ ¼ xnsþsþ1þP;

where the second equality comes from the fact that Gi is periodic of period P. This shows
that the first components of Sð !Fð!xnÞÞ and !FðSð!xnÞÞ are the same. We proceed inductively to
show that all the components are the same. Assume that ðSð !Fð!xnÞÞÞj ¼ ð !FðSð!xnÞÞÞj for all
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j , i. Then,

ð !FðSð!xnÞÞÞi ¼ GiðFi21ðSð!xnÞÞ; . . . ;F1ðSð!xnÞÞ; xnsþsþP; . . . ; xnsþsþPþi2sÞ
¼ GiþPðxnsþsþi21þP; . . . ; xnsþsþ1þP; xnsþsþP; . . . ; xnsþsþPþi2sÞ
¼ xnsþsþiþP;

where we have again used the P-periodicity if Gi to conclude Gi ¼ GiþP. This shows that

Sð !Fð!xnÞÞ ¼ !FðSð!xnÞÞ:

So, inductively, we have Sð!xnÞ ¼ !FnðSð!x0ÞÞ. Let x* be the unique fixed point of !F and
define two sequences, the first with x0 ¼ x * and the second with y0 ¼ Sðx*Þ. Note that

lim
n!1

yn ¼ lim
n!1

!Fnð!y0Þ ¼ x*;

since all initial conditions converge to x*, and at the same time

lim
n!1

yn ¼ lim
n!1

!Fnð!y0Þ ¼ lim
n!1

!FnðSðx0ÞÞ ¼ lim
n!1

!Sð !Fnðx0ÞÞ ¼ lim
n!1

Sðx0Þ ¼ Sðx *Þ:

So, we conclude that Sðx*Þ ¼ x* and thus x * is periodic of period P. A

Corollary 3.5. Let G1; . . . ;GP : RM ! R be sup-contractive and let GnþP ¼ GP for all
n. Given an initial condition ðx1; . . . ; xMÞ , let

xn ¼ Gnðxn21; . . . ; xn2MÞ;

then xn converges to a unique P-periodic orbit independent of initial conditions.

Proof. By Theorem 3.4, there exists a unique x* [ Rs which is P-periodic such that
limn!1 !xn ¼ x *. Thus, xn is asymptotically periodic of period P. A

We conclude that xn approaches a unique periodic orbit, for any initial condition,
whose period is equal to the forcing period P. The periodicity of the rank-type equation (5)
is now an easy corollary.

Corollary 3.6. For i ¼ 1; . . . ;M, let f iðx; nÞ : R £N! R be contractive in x and
P-periodic in n. Given an initial condition ðx1; . . . ; xMÞ and k [ {1; . . . ;M} , let

xn ¼ k-rank{f iðxn2i; nÞ};

then xn converges to a unique P-periodic orbit independent of initial conditions.

Proof. Recall that by Lemma 2.4, the k-rank function is sup-non-expansive, and each
f iðx; nÞ is sup-contractive in x so by Lemma 2.5, the composition is sup-contractive.
By Corollary 3.5, xn is asymptotically periodic of period P. A

We can now return to the equation from Example 1.7.
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Example 3.7. Let f 1; . . . ; f M : R! R be contractions. Let P # M be a positive integer and
set !n ¼ 1þ ðnmodPÞ. Let

xn ¼ Gnðxn21; . . . ; xn2MÞ ¼
1

2
max{f iðxn2iÞ}2 !n-rank{f iðxn2iÞ}
% &

Recall that by Lemma 2.4, the rank functions are all sup-non-expansive. Thus,
!n-rank{f iðxn2iÞ} is a composition of a sup-non-expansive function with sup-contractive
functions fi, and thus the composition is sup-contractive by Lemma 2.5. Furthermore,
setting !z ¼ ð1=2;21=2Þ, we see that k!zk1 ¼ 1 so f ðxÞ ¼ zTx is sup-non-expansive.
Therefore,

Gnðy1; . . . ; yMÞ ¼ zT max{f iðyiÞ}; !n-rank{f iðyiÞ}
% &

¼ 1

2
max{f iðyiÞ}2 !n-rank{f iðyiÞ}
% &

is sup-contractive for all n. By Corollary 3.5, xn is asymptotically periodic with period P.

4. Finding the periodic limit

We now return to the max-type equation (2) and rank-type equation (5) and attempt to find
closed-form solutions. The closed-form solution to the autonomous contractive rank-type
equation was first given in [10], and we are able to reprove this result as a special case.
However, we will see that finding a closed formula for the limit under periodic forcing is in
general more difficult. We will need two lemmas about contractions on R.

Lemma 4.1. Let f : R! R be a contraction with fixed point r, then x . r implies f ðxÞ , x,
and x , r implies f ðxÞ . x.

Proof. Since f ðrÞ ¼ r and f is a contraction, j f ðxÞ2 rj , jx2 rj. If x . r, then

f ðxÞ2 r # j f ðxÞ2 rj , jx2 rj ¼ x2 r;

so f ðxÞ , x. If x , r, then

r 2 f ðxÞ # j f ðxÞ2 rj , jx2 rj ¼ r 2 x;

so f ðxÞ . x. A

Lemma 4.2. Let f ; g : R! R be contractions, and assume that r1; r2; r3; r4 satisfy f ðr2Þ ¼
r1 , r3 and gðr1Þ ¼ r2 , r4. Then, either f ðr4Þ , r3 or gðr3Þ , r4.

Proof. Assume gðr3Þ $ r4. Then,

r4 2 r2 ¼ r4 2 gðr1Þ # gðr3Þ2 gðr1Þ , r3 2 r1:

The contractivity of f yields

f ðr4Þ2 r1 # j f ðr4Þ2 r1j ¼ j f ðr4Þ2 f ðr2Þj , jr4 2 r2j ¼ r4 2 r2 , r3 2 r1;

which implies that f ðr4Þ , r3. A
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First, we can use Lemma 4.1 to find the explicit solution of the autonomous equation
(4), where each fi is a contraction with fixed point ri. The following result, first proved in
[10], shows that every initial condition converges to the constant solution k-rank {ri}.

Theorem 4.3. Let f i : R! R be a contraction with fixed point ri for 1 # i # M and set
xn ¼ k-rank {f iðxn2iÞ}. Then, limn!1xn ¼ k-rank{ri}.

Proof. Note that this recurrence is autonomous and thus P ¼ 1, so by Corollary 3.6
every initial condition converges to a unique constant (period 1) solution x *. Thus,
it remains only to show that x* ¼ k-rank{ri} is a fixed point of the recurrence.
Let s : {1; . . . ;M}! {1; . . . ;M} be a permutation such that

rs ð1Þ # rs ð2Þ # · · · # rsðMÞ:

So, the constant solution should be x* ¼ rs ðkÞ. Assume x1 ¼ x2 ¼ · · · ¼ xM ¼ x*. Then,

xMþ1 ¼ k-rank{f 1ðx*Þ; . . . ; f sðkÞðx*Þ; . . . ; f Mðx*Þ}
¼ k-rank{f 1ðx*Þ; . . . ; x*; . . . ; f Mðx*Þ}:

We want to show that xMþ1 ¼ x*. Note that when i , k, we have rsðiÞ # rsðkÞ ¼ x*, so by
Lemma 3.1 we have f sðiÞðx*Þ # x*. Similarly, when i . k, we have rsðiÞ $ rsðkÞ ¼ x*, so
by Lemma 3.1, we have f sðiÞðx*Þ $ x*. Thus, we have

f sð1Þðx*Þ; . . . ; f sðk21Þðx *Þ # x* # f sðkþ1Þðx *Þ; . . . ; f sðMÞðx*Þ:

Thus, xMþ1 ¼ x*, so x* is a fixed point of the recurrence and therefore it is the unique limit
for any initial condition. A

Theorem 4.3 gives the complete solution to the rank-type equation (5) in the period 1
case. We now turn to the case of period 2 forcing and restrict our attention to the max-type
equation (2), for which it is possible to find a closed-form solution. This solution gives
insight into the complexity of solutions to (2) when the forcing period is large.
For M ¼ P ¼ 2, the equation (5) becomes the period 2 recurrence

x2i ¼ max{f 1ðx2i21Þ; f 2ðx2i22Þ}
x2iþ1 ¼ max{g1ðx2iÞ; g2ðx2i21Þ};

ð10Þ

where f 1; f 2; g1 and g2 are contractions. We can denote the fixed points

f 1ðg1ðr1ÞÞ ¼ f 1ðr2Þ ¼ r1

g1ðf 1ðr2ÞÞ ¼ g1ðr1Þ ¼ r2

f 2ðr3Þ ¼ r3

g2ðr4Þ ¼ r4:

Theorem 4.4. The period-2 orbit

x2i ¼ max{f 1ðmax{r2; r4}Þ; r3}
x2iþ1 ¼ max{g1ðmax{r1; r3}Þ; r4};

ð11Þ

for i $ 0 is the attracting period-2 orbit of difference equation (10).
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Proof. Due to Corollary 3.6, it suffices to show that the formula (11) gives a period-2 orbit.
First note the following table can be obtained easily.

For example, in the first row, we have:

x2i ¼ max{f 1ðmax{r2; r4}Þ; r3} ¼ max{f 1ðr2Þ; r3} ¼ max{r1; r3} ¼ r1:

The rest follows from similar simple logic. Now, we can make a new table considering
all the possibilities for x2i, x2iþ1 and x2iþ2 ¼ max{f 1ðx2iþ1Þ; f 2ðx2iÞ}.

Since columns three and four are clear, we must justify the final column using
Lemma 4.1, (note that the final column is simply the max of columns three and four). In the
first row, since r1 . r3 and r3 is the fixed point of f2, Lemma 4.1 implies that f 2ðr1Þ , r1.
In the second row, note that r3 ¼ max{f 1ðr4Þ; r3} so r3 . f 1ðr4Þ. In the third row, note that
f 1ðr4Þ . r3 and since r3 is the fixed point of f2 by Lemma 4.1, we conclude that
f 2ðf 1ðr4ÞÞ , f 1ðr4Þ. Finally, in the fourth column, note that this combination only occurs
when r3 . r1 and r1 is the fixed point of f 1 + g1 so by Lemma 4.1, we have f 1ðg1ðr3ÞÞ , r3.
Thus, the table shows that x2iþ2 ¼ x2i.

Note that one combination, x2i ¼ f 1ðr4Þ and x2iþ1 ¼ g1ðr3Þ is missing from the table. If
this combination occurred, then f 1ðr2Þ ¼ r1 , r3 # f 1ðr4Þ and g1ðr1Þ ¼ r2 , r4 # g1ðr3Þ,
which contradicts Lemma 4.2. Thus, this combination is impossible, and the four rows of
the table represent all possibilities.

We now construct an analogous table to show that x2iþ3 ¼ x2iþ1, which will complete
the proof.

In the first row, r2 . r4 so by Lemma 4.1, g2ðr2Þ , r2. In the second row, r4 ¼
max{g1ðr3Þ; r4} so r4 . g1ðr3Þ. In the third row, r4 . r2 so by Lemma 4.1,
g1ðf 1ðr4Þ , r4Þ. In the final row, g1ðr3Þ . r4 so by Lemma 4.1, we have

x2i x2iþ1 f1 (x2iþ1) f2 (x2i) x2iþ2

r1 r2 r1 f2 (r1) r1
r3 r4 f1 (r4) r3 r3
f1 (r4) r4 f1 (r4) f2 ( f1 (r4)) f1 (r4)
r3 g1 (r3) f1 (g1 (r3)) r3 r3

x2iþ2 x2iþ1 g1 (x2iþ2) g2 (x2iþ1) x2iþ3

r1 r2 r2 g2 (r2) r2
r3 r4 g1 (r3) r4 r4
f1 (r4) r4 g1 ( f1 (r4)) r4 r4
r3 g1 (r3) g1 (r3) g2 (g1 (r3)) g1 (r3)

max{r1, r3} max{r2, r4} x2i x2iþ1

r1 r2 r1 r2
r3 r4 max{r3, f1 (r4)} max{r4, g1 (r3)}
r1 r4 max{r3, f1 (r4)} r4
r3 r2 r3 max{r4, g1 (r3)}
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g2ðg1ðr3ÞÞ , g1ðr3Þ. This completes the justification of this table, and finishes the
proof. A

Example 4.5. We return to the equation from Example 1.5 with M ¼ P ¼ 2

x2i ¼ max A11x
a1

2i21;A21x
a2

2i22

! "

x2iþ1 ¼ max A12x
a1

2i ;A22x
a2

2i21

! "
;

where Ajk . 0 and21 , a1;a2 , 1. We rewrite this equation by taking the natural log of
each term (since ln is monotonic) to get

y2i ¼ max{lnA11 þ a1y2i21; lnA21 þ a2y2i22}

y2iþ1 ¼ max{lnA12 þ a1y2i; lnA22 þ a2y2i21}:

In terms of Theorem 4.4, we have

r1 ¼
lnA12 þ a1lnA11

12 a2
1

r2 ¼
lnA11 þ a1lnA12

12 a2
1

r3 ¼
lnA22

12 a2

r4 ¼
lnA21

12 a2
:

Then, the period-2 limit is defined in Theorem 4.4, and we can exponentiate to get the
period-2 limit of xn. Thus, we have

x2i ¼ max A12A
ða1=12a2Þ
21 ;A12A

a1=12a2
1ð Þ

11 A
a2
1=12a2

1ð Þ
12 ;Að1=12a2Þ

22

n o

x2iþ1 ¼ max A11A
ða1=12a2Þ
22 ;A11A

a1=12a2
1ð Þ

12 A
a2
1=12a2

1ð Þ
11 ;Að1=12a2Þ

21

n o
;

as the periodic limit. This solution is consistent with the autonomous case in Example 2.6
of [11]. Setting A1 ¼ A11 ¼ A12 and A2 ¼ A21 ¼ A22, the solution is found to be simply

xn !max A
ð1=12a1Þ
1 ;Að1=12a2Þ

2

n o
.

5. Discussion

We have shown in Corollary 3.6 that solutions of periodically forced rank-type difference
equations are asymptotically periodic of the forcing period. The same is true of a class of
more general equations called sup-contractive, according to Corollary 3.5. In some simple
cases, we were able to identify explicit solutions, as in Theorems 4.3 and 4.4. The solutions
appear to be significantly more complicated for larger period P and memoryM than treated
here, and explicit formulas for the solutions remain to be found.
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