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a b s t r a c t

In a previous paper we introduced a method called augmented sparse reconstruction (ASR) that
identifies links among nodes of ordinary differential equation networks, given a small set of observed
trajectories with various initial conditions. The main purpose of that technique was to reconstruct
intracellular protein signaling networks.

In this paper we show that a recursive augmented sparse reconstruction generates artificial
networks that are homologous to a large, reference network, in the sense that kinase inhibition of
several reactions in the network alters the trajectories of a sizable number of proteins in comparable
ways for reference and reconstructed networks. We show this result using a large in-silico model of the
epidermal growth factor receptor (EGF-R) driven signaling cascade to generate the data used in the
reconstruction algorithm.

The most significant consequence of this observed homology is that a nearly optimal combinatorial
dosage of kinase inhibitors can be inferred, for many nodes, from the reconstructed network, a result
potentially useful for a variety of applications in personalized medicine.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most intriguing and promising fields in medical
research is based on the assumption that the great amount of
information generated by high throughput technologies would
allow us to understand cancer’s complexity at various levels. In
recent years, the completion of the Human Genome Project and
other rapid advances in genomics have led to increasing anticipa-
tion of an era of genomic and personalized medicine, in which an
individual’s health is optimized through the use of all available
patient data, including data on the individual’s genome and its
downstream products.

Because variations in individuals’ genetic profiles often corre-
late with differences in how individuals develop diseases and
respond to treatment, personalized medicine supported by
genetic and genomic assays has the potential to facilitate optimal
risk identification, disease screening, disease diagnosis, therapy,
and monitoring (Kawamoto et al., 2009; Willard and Ginsburg,
2009; West et al., 2006). In addition to genomic assays, proteomic
and metabolomic signatures hold great potential for serving as
pillars of personalized medicine in the future (Willard et al., 2005;

Beretta, 2007; Gerszten et al., 2008; Lewis et al., 2008; Kaddurah-
Daouk et al., 2008).

While personalized medicine guided by genomics is still in
early stages of development, individuals’ genetic profiles are
already starting to be used to guide patient care. As some
examples, clinicians can obtain gene expression profiles of breast
cancer samples to guide management (Paik et al., 2006), geno-
types of HIV samples to identify the optimal antiretroviral regi-
men (Blum et al., 2005), and genetic profiles of patients’
cytochrome P450 drug metabolizing system to guide the selection
and dosing of pharmacotherapies (de Leon et al., 2006). However,
it is the proteins that form the actual cell signaling and metabolic
networks within the cell. Indeed, for the new classes of molecular
targeted inhibitors, it is the proteins that are the drug targets, not
the genes, and the molecular networks are underpinned by
protein and protein phosphorylation.

Personalized medicine could be directed towards the genera-
tion of protein-based molecular maps of cancer networks in order
to target malignant cells in their specific and unique context. The
usefulness of patient-tailored therapy comes from the potential
ability to depict patient-specific molecular circuitries and hence
translate each targeted treatment in a favorable clinical response
(Petricoin et al., 2005).

On the other hand, we still lack the ability to dynamically
measure and collect enough data from every protein/node within
networks with current methodologies. This restriction forces on

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/yjtbi

Journal of Theoretical Biology

0022-5193/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jtbi.2011.03.020

! Corresponding author. Tel.: þ1 703 993 9549.
E-mail address: dnapolet@gmu.edu (D. Napoletani).

Journal of Theoretical Biology 279 (2011) 29–43

www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2011.03.020
mailto:dnapolet@gmu.edu
dx.doi.org/10.1016/j.jtbi.2011.03.020


us a shift in mind set, in the sense that, rather than attempting a
full reconstruction and understanding of cell pathways, we should
search for equivalent, indistinguishable, classes of models that
project to the same network structure, in the sense that such
classes should ideally give rise, for each protein/node, to trajec-
tories that are qualitatively similar even when the details of the
topology of the connections among nodes differ.

The potential therapeutic implications of such an approach are
evident if we consider the great heterogeneity of cancer patients.
Individuals with similar stages of the disease show diverse
therapeutic responses that are oftentimes not predictable on the
basis of genetic mutation analysis. Primary cancer stem cells
(CSCs) from a variety of tumors have been isolated and char-
acterized and clear evidences exist of their association with
tumor’s resistance to chemo- and radio-therapies, making CSCs
a useful and effective target for cancer research (Ailles and
Weissman, 2007; Gilbert and Ross, 2009). Moreover, an extensive
proteomic, genetic and drug sensitivity profiling of the NCI60 cell
line set has recently highlighted the importance of direct studies
on cancer cells in order to associate drug responsiveness to
specific molecular signatures (Park et al., 2010). Such studies
and clinical experience, call for a multi-targeted approach to
cancer treatment and underscore the importance of molecular
biomarkers (Zahorowska et al., 2009). Therefore, an in-silico
system capable of reconstructing the behavior of deregulated
cancer cell signaling networks holds a significant experimental
value in the prediction of therapeutic responses based on indivi-
dual patients molecular characteristics.

Our approach to the problem of controlling protein signaling
networks starts with this broad methodological assumption, but
it necessarily moves further than that since it is not yet clear what
we should consider as a measure of similarity of trajectories for
general, large networks. It is likely that properties such as the
shape of the trajectories, the location of their maxima, and the
value of the maxima themselves, are among the critical factors in
deciding whether or not a given signaling response is triggered.

For example, activation of EGF-R, which is an upstream node
and it is governed only by the kinetics and thermodynamics of
EGF/EGF-receptor interaction and the biochemistry of the kinase
domain, is expected to be similar across cell lines. In contrast,
signals further down the cascade are modulated by many
upstream proteins, many of whose concentrations and rate
constants impact on the overall output.

Despite this complex network behavior, there is a strong
correlation between specific cell functions and the maximum
concentration of key proteins known to be involved in cell
growth, proliferation, survival and death, suggesting that suppres-
sion/enhancement of the activity of specific nodes can be seen
potentially as a way to achieve the final goal of disruptively
interfering with the functioning of cancer cells.

The trajectories for each node are usually generated in vitro by
stimulation of cell lines and subsequent relaxation to steady state,
so that the extent of suppression of a node activity can be
determined by looking at the maximum value of a relatively
simple curve.

Even though the maximum activity of nodes is only one of
many key features of signaling networks, its accurate modifica-
tion is by no means an easy task. Agents directed at an individual
target in the network frequently show limited efficacy, poor
safety and resistance profiles, which are often due to factors such
as network robustness, redundancy, crosstalk, compensatory and
neutralizing actions and anti-target and counter-target activities.

The ability to predict in-silico the sensitivity of cancer cells to
the inhibition of multiple reactions would allow us to combine
drugs in order to achieve synergy and/or potentiation of several
orders of magnitude, while avoiding undesired effects on normal

cells. Systems-oriented approaches has already yielded several
clinical successes and drug-discovery efforts are now focused
towards near-optimal combinatorial treatments that target cell
pathways at several sites.

Because the fundamental goal of a combinatorial approach to
cancer therapy is the control of the activity of specific nodes in
the network, we use it to define an operative notion of homo-
logous networks. We select a target node N, and a set of reactions
P, and we assume the following definition of homology of net-
works: two networks are homologous (with respect to N and P) if
the activity of node N reacts in a similar way to the suppression of
the given reactions P performed by known kinases.

Note that this comparison can be made on very long time
scales, ideally on time intervals where the networks have each
relaxed to the steady state, so that the comparison of the
networks can be considered global.

Remark 1. In Section 3, we define more formally similarity as the
concordance of the relative magnitude of the maximum difference
of the trajectories of the node N, starting from equal initial condi-
tions, when control of the reactions in the networks, via kinase
inhibition, is on, and when control is off. In this way, we have a
simple, even though partial, way to determine how close two
networks will react, for specific nodes, to similar control schemes.

In a previous paper (Napoletani et al., 2008) we introduced a
method called augmented sparse reconstruction (ASR) that iden-
tifies links among nodes of ordinary differential equation (ODE)
networks, given a small set of observed trajectories with various
initial conditions. The main purpose of that technique was to
reconstruct intracellular protein signaling networks under the
assumption that most nodes interact with only a small fraction of
the total number of nodes in the network. We say in that case that
the network is sparse and such information can greatly help in
reconstructing the network itself.

In this paper we show that augmented sparse reconstruction
generates artificial networks that are homologous to the initial
network, in the sense that kinase inhibition of several reactions in
the network alters the trajectories of a sizable number of proteins
in comparable ways. We show this surprising result using an in-
silicomodel of the epidermal growth factor receptor (EGF-R) driven
signaling cascade to generate the initial observed trajectories.

The most significant consequence of this observed homology is
that the optimal combinatorial dosage of kinase inhibitors can be
inferred in many cases from the reconstructed network.1 This
result could be of great value for a variety of applications in
personalized medicine.

While there have been successful attempts to derive network
models from a limited number of perturbation experiments (see for
example the recent works Nelander et al., 2008; Munsky et al.,
2009), we stress that our method achieves a degree of reconstruc-
tion and dynamical control for nodes of a network whose size far
exceeds those tested so far in the literature, with the exception of
the very interesting work in Chang et al. (2009), which uses sparsity
in an essential way, but that builds only a static model rather than a
dynamical one. A significant amount of information can be inferred
by static analysis, however a full network control in non-stationary
conditions can only be achieved in a dynamical setting.

In Section 2 we will show how the algorithm we described in
Napoletani et al. (2008) needs to be modified to take into
consideration knowledge of specific reactions that can be inhib-
ited. Section 3 is dedicated to comparison between an initial

1 A patent application has been filed for the methods described in this paper.
Patent application number 12/959,096, filed on 12/02/2010.
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network and partially homologous networks obtained from its
trajectories by augmented sparse reconstruction.

2. Matching pursuit for augmented sparse reconstruction

Because of our very limited understanding of the changes of
dynamics in large, perturbed networks (except in those cases
when the parameters of the model of individual nodes are only
slightly perturbed), it is daunting to set up an homologous
network from first principles, given a reference network.

We believe that the right approach to generate homologous
networks is to directly use the state space, in the sense that by
modifying or restricting information on the trajectories, we can use
reconstruction methods to give candidate homologous networks of
a reference network. Effectively, this is a signal processing approach
to network dynamics: optimal signal representation of the trajec-
tories becomes the main tool to explore network structure.

We select a well established model of the epidermal growth
factor receptor (EGF-R) signaling pathway as reference network
(Schoeberl et al., 2002). The reason of such choice is the great
importance of the epidermal growth factor receptor signaling
pathway in cancer biology and the fact that it is one of the most
well-studied pathways that regulate growth, survival, prolifera-
tion, and differentiation in mammalian cells (Oda et al., 2005).

In the EGF-R network, upon binding of the ligand, the receptors
dimerize and phosphorylate each other, thus generating docking
sites for five adapter proteins and five enzymes. Signals from ErbBs
converge to molecules forming a bow-tie core and are supposed to
represent a versatile and conserved group of molecules and inter-
actions. The amplitude of EGF-R cascades reaches high levels within
minutes of stimulus and an important role is played by the recycling
mechanism of receptor molecules after signal transduction, so that,
in the absence of EGF molecules the system relaxes back to steady
state, in line with the generic description of trajectories put forward
in Section 1. The four human ErbB receptors induce a wide variety of
cellular responses thereby generating a complex protein interaction
network (Jones et al., 2006).

Due to its properties and involvement in tumor progression,
the EGF-R network inspired several experimental and mathema-
tical modeling studies (Birtwistle et al., 2007; Uetz and Stagljar,
2006). Deregulation of EGF-R signaling plays a key role in
numerous cancers, including glioblastomas, breast cancer, and
non-small cell lung cancer (NSCLC) (Kumar et al., 2008).

Another reason to choose the EGF-R pathway as a reference
network is that despite the fact that various agents have been
developed to target EGF-R, there is a need for improved strategies
to integrate anti-EGF-R agents with conventional therapies and to
explore combinations with other molecular targets (Baselga and
Arteaga, 2005).

In this work we use the differential equation model of EGF-R
network put forward in Schoeberl et al. (2002) and Hornberg et al.
(2005). This model assumes only linear and quadratic terms in the
representation of the derivative of the activity of each node of the
network. Linear terms correspond to uni-molecular interactions
and quadratic terms correspond to bimolecular interactions.

From the computational point of view, an important feature of
this network is its large size (103 variables and 148 distinct
reactions). Most reconstruction techniques are not able to deal
with the reconstruction and control of very large networks, if the
experimental data are limited and noisy, and yet this is exactly
the size of networks that are of interest when exploring pathways
that may not be well understood.

In Eq. (1), we show the model of the network at a node n, in
the specific integral form that is used in augmented sparse
reconstruction; for a complete analysis of this integral model

we refer to Napoletani et al. (2008). Essentially, Eq. (1) is nothing
else than the integral of a differential equation with linear and
quadratic terms, and with added random terms to make sure the
reconstruction algorithm is able to eliminate errors-in-variables
due especially to the presence of non-linear terms.

xnðtÞ$xnðt0Þ ¼ a0nþ
XN

i ¼ 1

lin

Z t

t0

xi dt

þbq

XN

i ¼ 1

XN

j ¼ 1

qijn

Z t

t0

xixj dtþ
XG

g ¼ 1

wgnng : ð1Þ

Here, the bqr1 represent positive attenuation coefficients for
the quadratic terms. The systems parameters at node n that we
need to determine are: a0n, lin, i¼ 1, . . . ,N, qijn, i,j¼ 1, . . . ,N. The ng,
g ¼ 1,: :,G are discrete random vectors normally distributed, scaled
to have norm 1 and multiplied by suitable parameters wgn to be
determined together with the system parameters.

The reconstruction algorithm of Napoletani et al. (2008)
assumes sparsity of the network, i.e. we assume that each node
interacts with only a small number of nodes compared with the
total of possible nodes. This assumption implies that the number
of terms in each equation in (1) with nonzero parameters is small
compared to the total possible number of terms.

Sparsity plays a crucial role in our method, since it allows to use
fast linear programming techniques in looking for the optimal
model that has as few terms as possible (Chen et al., 1998), but just
as important for network reconstruction is the fact that our method
avoids a direct estimate of the derivative of the trajectories, and that
we augment the model with random terms. Despite these adjust-
ments, the quality of the reconstruction worsen for nodes with
many links, even when the total number of nonzero terms in Eq. (1)
is low compared to the total number of possible terms.

Though sparsity methods are very powerful, when properly
adapted to networks, and they allow for significant inference of
the network under limited and noisy data, it is unlikely that they,
or any other currently known methods, will fully reconstruct the
network structure from very limited, coarse data.

Despite these limitations, the fundamental claim of this work
is that we can have homologous control despite our inability to
gain full reconstruction of the topology of a network. This claim is
intrinsically related, in ways that still need to be explored, to a
fundamental assumption of systems biology, i.e. the belief that
biological networks are robust under variations of the strength
and type of connections of the signaling pathways.

Robustness seems to be a consequence of several recurrent
factors, for example the bow-tie architecture (or hourglass struc-
ture) of the EGF-R network is considered a characteristic feature
for robust evolvable systems (Kitano, 2004). Another important
feature of robust biological networks is the fact that they show a
diverse array of molecules for input and output, that are con-
nected to the conserved core of the network with highly redun-
dant and extensively crosstalking pathways and feedback control
loops in various places in the pathway.

If the assumption of robustness is correct for most biological
networks, augmented sparse reconstruction may not recover the
exact network, but it may be sufficiently accurate to infer a
network that is homologous to the original one. We will see that
this possibility is realized for our EGF-R reference model.

In this work we assume that specific reactions must be present in
the reconstruction of the network, since we define homologous
systems with respect to the action of kinase inhibitors. In Napoletani
et al. (2008), there was no such constraint, therefore our main
objective in this section is to adapt the algorithm developed in that
work in such a way that it guarantees the presence of specific
reactions to be targeted with available kinase inhibitors.

D. Napoletani et al. / Journal of Theoretical Biology 279 (2011) 29–43 31



Signal processing sparsity methods, that are at the core of
augmented sparse reconstruction, are not able to guarantee the
presence of these individual reactions, since they are more con-
cerned with global optimality of the representation of each node.
We need, therefore, an adaptive, recursive augmented reconstruc-
tion algorithm to extract the few terms in each equation due to the
chosen reactions, before we apply the augmented sparse recon-
struction algorithm to the whole representation system.

To understand the details of the reconstruction algorithm, we
first recall how individual reactions are put together in a modular
way to generate systems of differential equations describing the
network of Schoeberl et al. (2002) and Hornberg et al. (2005).

Suppose that phosphorylated proteins xi and xj are interacting to
phosphorylate protein xk, and in the process they get de-phosphory-
lated; this specific reaction can be modeled (Schoeberl et al., 2002;
Voit, 2000) as v¼ axixj$bxk. Its effects on the differential equations of
the network are as follows: if we let _xi ¼ fiðx1, . . . ,xnÞ, i.e. if we model
the derivative of the phosphorylated concentration of protein xi as a
function of the state of (possibly) all proteins, then, because the
reaction de-phosphorylate xi, then _xi ¼ fiðx1, . . . ,xnÞ$v, and similarly
_xj ¼ fjðx1, . . . ,xnÞ$v. On the contrary, since the specific reaction in-
creases the phosphorylation of xk, we will have _xk ¼ fkðx1, . . . ,xnÞþv.

The immediate consequence of this modeling assumption is
that if we know that a simple quadratic reaction v¼ axixj$bxk is
involved in a network, then we know that the representation of
the derivative of xi,xj,xk will have a specific quadratic and a
specific linear term in the representation in (1). Only the para-
meters of these terms will be unknown.

The more reactions we make available as targets of kinase
inhibition, the more indirect information we have about the
details of the terms of the model. In many models it is possible
as well that the algebraic form of the reaction is v¼ axixj$bxkxh,
this does not affect the modular building of the network, or our
approach, but only the range of proteins affected.

One way to model kinase inhibition (see Hornberg et al., 2005) is
to assume suppression of a target reaction v, i.e. v will appear in the
representation of the derivatives of the relevant proteins concentra-
tions multiplied by a kinase suppression coefficient ko1.

This modeling of kinase inhibitors stems from the assumption
that, whatever the current impact of a reaction on the network, a
kinase inhibitor targeting that reaction can only slow down its
effect on the network in relative terms. Clinical and biological
evidences in cancer therapy suggest that the response of patients
is often limited by both the low efficacy of drug targeting and by
resistance mechanism that cancer cells evolve before and during
treatments. Nonetheless, many tumors are dependent (‘addicted
to’) on specific signaling nodes/pathways and even subtle reduc-
tions in the total amount of such nodes can impair tumor’s
homeostasis over time (Sharma and Settleman, 2007; Weinstein
and Joe, 2008). Such evidences are the foundation of combinator-
ial treatments for cancer and of our assumption that even just a
relative, but continuous slowing down of a reaction can have
important impact on the network.

Most kinase inhibitors discovered to date are ATP competitive
and present one to three hydrogen bonds to the amino acids
located in the hinge region of the target kinase, thereby mimick-
ing the hydrogen bonds that are normally formed by the adenine
ring of ATP (Zhang et al., 2009).

Oftentimes kinase inhibitors cross-react, with various degrees
of specificity, either with other kinases among the 518 encoded in
the human genome, or with the abundant nucleotide-binding
enzymes that are present inside cells. The degree of kinase
inhibitors selectivity depends on many factors such as their
concentration and cellular context. Biochemical and cellular
assays are available for the dissection of the specificity range of
small molecules for various kinases, but to date the evaluation of

kinase inhibitor selectivity on an organismal level remains a
significant research challenge (Zhang et al., 2009).

Different models of inhibition of reactions can be easily
implemented in our method, for example forward rate kinase
inhibition and backward rate kinase inhibition would require k to
act only on the first or second term of the reaction respectively.
Since changes in k in general do not affect to a large extent the
activity of any given individual node, in Section 3 we use k¼ 0:1.
Such value of k allows for detectable changes of trajectories, but it
may lead in real systems to unspecific inhibition.

Our discussion up to this point clarifies how the knowledge of
a reaction in the system can be used to build specific building
blocks in selected differential equations of the unknown model.
Next, we write down the heuristic description of a modified
augmented reconstruction algorithm that includes knowledge of
the reactors of a given set of reactions. The details of the
algorithm are given in Appendix B.

2.1. Modified ASR algorithm

Select a collection of potential target reactions vs ¼ asxis xjs$bsxks ,
s¼ 1, . . . ,S. Given the collection of all time measurements for each
node n with n¼ 1, . . . ,N:

R1 Set up a representation matrix Z where each column corre-
sponds to a term of the right hand side of Eq. (1) (constant,
linear, quadratic and random). Set up a vector Yn that
corresponds to the left hand side of (1).

R2 Select the columns of Z that correspond to the target reactions
involved in the activity of the given node n.

R3 Perform augmented sparse reconstruction for Yn using only
the columns selected in step R2 to force those terms to have
large parameters in the overall representation. Subtract the
contribution of the target terms from the vector Yn.

R4 Perform augmented sparse reconstruction for the modified Yn
using the full representation matrix Z. Add back the para-
meters of the target terms found in the previous step to the
corresponding parameters found with the full matrix Z.

R5 Choose a threshold Tn. The reconstructed network equation
for node n will have only linear and quadratic terms that
correspond to parameters larger than Tn.

The modified ASR algorithm R1–R5 generalizes the algorithm in
Napoletani et al. (2008) in such a way that, for each node, a
preliminary augmented sparse reconstruction is performed only
on the terms that are related to the reactions we selected as
potential kinase targets, if they have an impact on that node. After
this preliminary step, a full augmented sparse reconstruction is
performed with all potential linear and quadratic terms. We
stress that only the reactors in the targeted reactions need to be
known, while the parameters of the reactions are found by the
modified ASR method automatically.

Note that we output a full model from the algorithm, rather than
a list of directed links to each node. This puts us in the position of
testing our conjecture that the augmented sparse reconstruction of a
network can be homologous to the reference network.

3. Partial homology of networks

With the algorithm described in the previous section, we can
produce a reconstructed network model of the reference EGF-R
network that is very likely to include the reactions vs ¼ asxis xjs$
bsxks , s¼ 1, . . . ,S that we want to target with kinase inhibitors
with nonzero parameters as and bs.
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Throughout the remaining sections, it is assumed that we have
sets of 20 different noisy initial conditions for time courses of nodes of
the network, and that we sample each time course at 11 points in the
interval [0,11], with time measured in minutes. This interval is
acceptable because, after t¼11, most nodes relax back to their steady
state and they do not contribute to the understanding of the
dynamics. Noise level for each time course is assumed to be at most
10% of the maximum value of the points along the time course itself.
This setting gives us a time course microarray with 20&11¼220
data points for each of the 103 nodes in the reference EGF-R network.

This number of data points in the microarray is very small
from the data mining perspective, but it is large from the
experimental, in vitro point of view. However, it is within the
limits of current experimental practice for reverse-phase protein
arrays, see for example the study in Nishizuka and Spurrier (2008)
or Nishizuka et al. (2008).2

If a specific experimental setting, or cell type, does not activate
some pathways, it is likely that those pathways will not be detected,
and their contribution to kinase inhibition will not be measurable.
Therefore, initial conditions of protein concentrations, correspond-
ing to distinct cell states, should ideally be able to explore as much
of the dynamical range of the reference network as possible. This
can be achieved experimentally by varying growth factors concen-
trations, e.g. EGF, across cell lines of different origins.

At the same time, we only need to detect homology according
to our definition in Section 1, and we argue in this section that it
is possible to generate an homologous reconstructed network
using the modified ASR algorithm even when only very limited
data are available.

In this paper, the time course microarray data used in the
modified ASR algorithm are simulated from the reference EGF-R
network described in Schoeberl et al. (2002). The simulated initial
time course microarray, and the modified ASR algorithm, provide
us with a candidate reconstructed network that is then compared
to the reference network.3 Reference and reconstructed networks
are simulated in the MATLAB environment available at www.
mathworks.com.4

The choice of meaningful initial conditions for the time
courses is complicated by the fact that the copy numbers of
individual proteins vary enormously, and protein concentration
varies with cell type and cell cycle stage, from less than 20 000
molecules per cell for the rarest types to 100 million copies for the
most common ones. In the average mammalian cell some 2000
proteins are considered to be relatively abundant (Alberts et al.,
1994; Lodish et al., 2000).

On the basis of these broad considerations, the initial conditions
for the protein concentrations of the reference network are chosen to
be random values uniformly distributed in the interval [2000,
20 000]. These values are assumed to be the average number of
copies of molecules per cell, and we are assuming that different cell
lines might have inherently diverse protein expression patterns. The
average number of EGF receptors is taken to be a random value in the
interval [1000, 10 000]. EGF is selected to be a random value in the
interval [10$8, 10$7] to simulate varying degrees of EGF stimulation.
Units are different for EGF as this is a compound outside the cell and
we measure it in gr/ml.

Remark 2. Even though this range of concentrations of each
protein is reasonable, the choice of initial conditions for concen-
trations is still not necessarily biologically meaningful, since the
relative distribution of the initial conditions of the nodes with
respect to each other is randomly selected. Yet we believe that
our choice reflects two basic assumptions that are necessary for
the success of our method, and that are indeed biologically
meaningful: strong variability of time courses, and measurable
dynamical changes.

Remark 3. Note moreover that the size of the simulated time
course microarray used in the modified ASR reconstruction is very
small compared with the volume of potential initial conditions, so
that we are severely undersampling the space of allowed initial
conditions. Yet, we will see in the following that these small data
sets have predictive power when used to infer the degree of
inhibition of nodes with other initial conditions. Therefore, it
seems that homology of networks has some robustness with
respect to potential variations in the experimental setting, so that
not every context relevant to a specific study need to be probed
for the application of our methodology.

Remark 4. Our analysis of the simulated EGF-R network model
described in Schoeberl et al. (2002) is done assuming that the
parameters of the network are constant in the interval of time
during which the time course microarray is generated. This
assumption seems reasonable because, even in practice, the time
courses over which the microarray data are generated are limited
to a time scale of days, and in the scenario of our simulations time
courses are taken over only 11 min. Moreover, in case of translat-
ing the modified ASR method to a real world situation where we
may seek a therapy for a disease or a pathophysiological state, the
time to disease progression and hence to a potential change in the
underlying network, is measurable in a time scale of months
(Ernst et al., 2008). We conclude that during the time required for
applying the modified ASR method to biological samples micro-
array dataset, the networks’ parameters can be considered rea-
sonably constant.

For clinical purposes, not all nodes are of interest. For example
in the reference model of EGF-R, x51 (doubly phosphorylated
MEK) and x59 (doubly phosphorylated ERK) are particularly
significant targets (Schoeberl et al., 2002). In this paper we are
interested in showing the global effect of a wide choice of kinase
inhibitors on the ensemble of all network nodes, to determine a
global measure of homology for the reference and reconstructed
networks, with limited data available for the reconstruction of the
homologous network. At the same time we focus on at least one
node (node 31, or free Shc) that is particularly amenable to our
techniques, and that has biological relevance.

To check the global effect of kinase inhibitors on the network,
we select a set S1 of 19 reactions to target with inhibitors, on the
basis of their position along the EGF-R signaling cascade, in order
to comprise both upstream and downstream molecular events
that span the entire signal transduction cascade from top (EGF-R
docking sites) to bottom (MEK or ERK phosphorylation). The set of
reactions S1 composed of nine pairs of reactions for surface and
internalized receptors plus a single degradation reaction.5

Although the function of internalization is not the same for all
the receptors, it has been demonstrated that EGF-R signals
through internalized receptor complexes. A clear correlation
between surface and internalized molecules has not been dis-
covered since internalization also causes receptor deactivation.

2 We mention here as well our work in preparation on adult stem cells, where
the aggregate data set generated by RPPA encompasses about 300 data points per
node: Functional protein network activation mapping of adult mesenchymal stem
cells differentiation, B. McCloud, L. Liotta, E. Petricoin.

3 The values of the time courses are known to be positive, and this is enforced,
for the simulation of the reconstructed network, in the discrete differential
equation solver.

4 Data and MATLAB codes used to generate all figures in the paper are
available upon request to the corresponding author at dnapolet@gmu.edu

5 The specific reactions that we select in S1 are: v19, v66; v20, v67; v23, v70;
v27, v74; v29, v76; v41, v83; v45, v87; v47, v89; v55, v97; and v60. Refer to
Schoeberl et al. (2002) for an actual description of these reactions.
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Importantly, (Schoeberl et al., 2002) demonstrated that under
certain circumstances, such as low EGF concentration, the inter-
nalization rate is a critical factor in EGF-R signaling. We took into
account both the surface and internalized reactions since both
contribute to the overall signaling and, at least for the EGF-R
system, molecules exist already in the clinics which would allow
for the selective targeting of surface receptor only (Cetuximab
monoclonal antibody). This selective targeting is not feasible for
many drug targets that are currently exploited for cancer therapy,
but we can still treat in theory the internalized or non-inter-
nalized versions of each reaction as if they were two distinct
reactions, and hence evaluate their relative impact upon inhibi-
tion. Notably, a single node that signals through both internalized
and non-internalized counterparts could be inhibited by blockade
of both reactions. Similarly, if the internalized version of a node is
not affecting the signaling output, the reconstructed system will
suggest inhibition of the non-internalized reaction.

We also note that our results do not depend essentially on
selecting pairs of internalized and non-internalized reactions. In
Fig. 4, we summarize results for three other sets of reactions for
which there is not extensive matching of internalized and non-
internalized versions of the same reaction. This scenario is the most
general one, applicable also to networks other than the EGF-R
signaling network, and therefore we will treat internalized and
non-internalized version of reactions as if they were distinguishable.

In Fig. 1, we can see an instance of the effect of kinase inhibitors
on both reference and reconstructed networks. The top plot shows
the change of time course of node 66 of the reference EGF-R network
when reactions v41 and v83 are inhibited with k¼ 0:1. The bottom
plot shows the corresponding change of time course for the 66th
node of the reconstructed network. The dynamics of reference and
reconstructed networks are just marginally similar for the node in
Fig. 1. The important point is that we do observe ameasurable change
of time courses due to the inhibition of those two reactions. Indeed,
we choose to display node 66 only because its displacements for
reference and reconstructed networks are of similar order of magni-
tudes and amenable to a direct graphic comparison. The similarity of

the time courses is, for other nodes, even less pronounced than what
we observe in Fig. 1 for node 66, or it may happen that the change of
time course of a node, due to control, is several order of magnitudes
smaller for the reconstructed network. This is expected, since we are
using an incredibly small amount of data to build the reconstructed
network and we cannot expect similarity in the actual trajectories
generated by this coarse approximation.

Remark 5. As an aside, it is not surprising that inhibition of
reactions v41 and v83 would naturally lead to the modulation of
node 66 (and 35, not shown). In fact, reaction v41, [(EGF-EGFRn)2-
GAP-Shcn]þ[Grb2-Sos]2[(EGF-EGFRn)2-GAP-Shcn-Grb2-Sos],
and it’s internalized counterpart v83, represent the recruitment of
adapter proteins to the activated receptor. These reactions are
directly upstream of nodes 35 and 66, which are the canonical
and internalized versions of the same node (i.e. (EGF-EGFRn)2-
GAP-Shcn-Grb2-Sos). Interestingly, it has been shown that treat-
ment of leukemia cells with a specific Grb2-SH3 (growth factor
receptor-bound protein 2-SH3 domain) inhibitor that disrupts the
Grb2-Sos (son of sevenless) complex, has dose-dependent cyto-
toxic effects, although not comparable with the efficacy of
Gleevec in chronic myelogenous leukemia (Ye et al., 2008).

In Fig. 1, note also that the sign of the change due to control is
the opposite in the two networks. In Appendix A we show that this
is a common occurrence with this method. This sign switching may
potentially be lessened by cross-validating parameter estimation
for the different nodes affected by the targeted reactions. We stress
that our goal is not exact trajectory reconstruction, but only an
estimate, using the reconstructed network, of how much the
magnitude of trajectories of the reference network are changed
when kinase inhibitors control is switched on.

To achieve this goal, we propose the following estimation of
the change of the trajectories due to kinase inhibitors control:
(a) We randomly select several initial conditions for concentra-
tions in the same wide region used to generate the initial time
course microarray of the reference system. (b) We simulate
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Fig. 1. An instance of relative concordance of the magnitude of displacement of trajectories for reference and reconstructed networks due to a specific pair of kinase
inhibitors. Dashed curves are the trajectories with inhibitors on, while solid curves are the trajectories without inhibitors. The top plot shows the effect of inhibition of
reactions v41 and v83 on the 66th node of the reference EGF-R network. The bottom plot shows the corresponding trajectories for the same node 66 of the reconstructed
network. The dynamics of reference and reconstructed networks are just marginally similar for this node. The important point is that we do observe a measurable change of
time courses due to the inhibition of the reactions for both networks.

D. Napoletani et al. / Journal of Theoretical Biology 279 (2011) 29–4334



reference network and reconstructed network with each of these
initial conditions for a fixed length of time, long enough for most
time courses to relax to their steady state. (c) We perform these
simulations with the target kinase inhibitors switched on, and
then with the kinase inhibitors off. (d) For each node, we compute
the maximum pointwise distance between trajectories with same
initial conditions and with control on and off respectively, over
the whole time interval used in the simulations. (e) The max-
imum pointwise distance for each node is divided by the max-
imum value of the trajectory of the same node in the reference
network, with control switched off. (f) Finally, we measure the
median of the scaled displacement for each node variable, with
respect to the set of initial conditions, as a statistically significant
measure of node displacement due to control.

We call the quantity generated by the procedures (a)–(f) the
median scaled maximum pointwise displacement of trajectories
of a node due to the specific choice of control kinase inhibitors,
sometimes we will refer to this quantity simply as median scaled
displacement.

Remark 6. We consider the median since most of the time the
scaled displacement has very similar behavior for most initial condi-
tions, but there is rarely a small number of initial conditions that may
lead to divergent time courses for some nodes in the reconstructed
system, making the mean too sensitive to these outliers.

In Fig. 2, we plot the magnitude of the median scaled point-
wise displacement of node 31 (free Shc) with respect to an
ordering of 190 different kinase inhibitor combinations, where
only one or at most two reactions of the set of 19 reactions S1

(described in footnote 5) are inhibited at the same time.6 Each
kinase inhibitor coefficient ks, s¼ 1, . . . ,19 is allowed to be either
1 (no inhibition) or 0.1 (high kinase inhibition), This combinator-
ial constraint is in line with current experimental protocols, i.e. to
allow only two kinase inhibitor coefficients to be different from

one for each possible combination. In this scenario an important
problem is to find the optimal two kinase inhibitors to choose
from a possibly large collection of inhibitors. More complex
combinatorial scenarios can be envisioned as well, with several
kinase inhibitors used at the same time. Note that generally a
kinase inhibitor is considered useful if it changes the phosphor-
ylation of a target by a significant amount. Our choice of ks equal
to 0.1 for individual reactions increases the chance that we
observe relative displacements of the nodes of the reference
network in the order of 10–20%.

Remark 7. It is implicitly assumed in the model that the kinase
inhibitors are specific at these concentrations. Notwithstanding the
strict 100-fold specificity criteria used during the screening that
companies usually perform for kinase inhibitors selection process,
many inhibitors show various degrees of off-targets, depending
either on their concentration or on the cell type. Interestingly,
some approved drugs (e.g. sunitinib, dasatinib) had relatively low
selectivity but are nevertheless effective for clinical use. Knowledge
of target profiles should allow careful evaluation as to which drug
or drug combination should be used in a particular situation to
better exploit each drug’s full potential (Johnson, 2009).

We display median scaled displacement curves for free Shc
(Src homology 2 domain-containing transforming protein 1 or
SHC1), since these curves exemplify a significant pattern of
homology between reconstructed and reference networks. And
also because Shc adapter proteins have an established and
important role in transducing signals from receptor tyrosine
kinases (RTKs) downstream to Ras. The biology of Shc is complex
and three isoforms have been described in the literature: isoforms
p46Shc and p52Shc, once phosphorylated, couple activated recep-
tor tyrosine kinases to Ras and are implicated in the cytoplasmic
propagation of mitogenic signals. Thus isoform p46Shc and iso-
form p52Shc may function as initiators of the Ras signaling
cascade in various non-neuronal systems (Migliaccio et al.,
1997). Differently from other isoforms, p66Shc does not mediate
Ras activation, but is involved in signal transduction pathways
that regulate the cellular response to oxidative stress and aging
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Fig. 2. In this plot we show a case in which the shape of the median scaled maximum displacement curve is very similar for reference and reconstructed networks for high
values of displacement. The blue starred line gives the median scaled maximum displacements for free Shc, the 31th node of the reference EGF-R network. Each point on
the horizontal axis corresponds to one among 190 different pairs of kinase inhibitor combinations. The red starred line gives the median scaled maximum displacement
curve for the same node in the reconstructed network. Curves are scaled to have norm equal to one for comparison purposes. Note the reversal of sign of the median
displacement curves for large displacement values.

6 The total of 190 combinations is the result of taking every combination of
one out of 19 reactions (19 such combinations) and every distinct combination of
two reactions out of 19 (171 such combinations).

D. Napoletani et al. / Journal of Theoretical Biology 279 (2011) 29–43 35



(Luzi et al., 2000; Ulivieri, 2010). Interestingly, the ratio between
active (tyrosine phosphorylated) Shc and p66Shc is a strong
independent prognostic indicator in breast cancer (Davol et al.,
2003). Total Shc activation is dependent on interaction and
subsequent phosphorylation by activated EGF-R (Alam et al.,
2009), and steroids promote the proliferation of tumor cells by
regulating the half life of cytosolic (free) Shc (Kumar et al., 2011).
Moreover, previous studies demonstrated that even small
amounts of free Shc drive most of the signal flux generated in
MAPK cascade activation by EGF receptors (Gong and Zhao, 2003).
Therefore we believe that, at least from a theoretical standpoint,
free Shc levels are a valuable readout for the impact of combined
inhibition of kinases into the EGF-R signaling. We also note that
the set of endpoints for which we have strong homology may vary
as we input into the modified ASR different time course micro-
array data, and the most useful endpoints, from a therapeutic
viewpoint, may not always display homology. In Section 4 we
suggest and test a criterium to automatically identify endpoints
that are likely to be strongly homologous.

There is a striking concordance of the shape of the two median
scaled displacement curves in Fig. 2 for large values of median
scaled displacement, even though the magnitude for each indivi-
dual kinase inhibitor combination can be vastly different and
indeed the magnitude of the median scaled displacement for the
reconstructed network can be far lower that the one of the
reference network for many nodes, even when there is very high
concordance of the shape of the median scaled displacement
curves. The observed concordance suggests that the median
scaled displacement curve of the reconstructed network can be
used to infer the corresponding curve for the reference network.

The active combinations that display the largest absolute
values of median scaled displacements in Fig. 2 are all combina-
tions of v41 with each of the reactions in S1.

7 In other words,
inhibition of v41 has a strong impact on free Shc and this impact
is then variously modulated by inhibition of the other reactions to
obtain different levels of median scaled displacement. The reac-
tion v41, already described in Remark 5, does not directly involve
free Shc as a reactor, and it is two reactions downstream of free
Shc. In fact, free Shc associates with (EGF-EGFRn)2-GAP complex,
this is subsequently phosphorylated by the receptor kinase to
generate the (EGF-EGFRn)2-GAP-Shcn complex, and finally, in
reaction v41, Grb2-Sos binds to the (EGF-EGFRn)2-GAP-Shcn

complex (refer to network scheme in Hornberg et al., 2005). The
distance separating v41 from free Shc confirms that modified ASR
can propagate the effect of inhibition of target reactions to
endpoints of the network that are not directly implicated in the
reactions themselves. Essentially, by inhibiting v41, we reduce
the consumption of a complex containing active Shc (Shcn), and
this leads to time courses where the concentration of available
free Shc in the network is larger (enhanced) than what it would
be without inhibition of v41.

To gain additional useful information we would need to
identify the near-optimal modulation of the inhibition of v41 by
inhibition of one of the other reactions in S1. In Fig. 2, combina-
tion 24 (v20, v41) is wrongly identified in the reconstructed
network as the one with largest absolute value of median scaled
displacement, since we can see that combination 92 (v41, v67) is
the one with largest absolute value of displacement for the
reference network. Reaction v67 is two reactions downstream of
(EGF-EGFRn)2-GAP, on a separate pathway from the one involving
Shc, and therefore v67 probably indirectly affects the

concentration of (EGF-EGFRn)2-GAP, which, in turn, affects the
availability of free Shc. Note however that v67 is the internalized
version of v20 (Hornberg et al., 2005), and therefore in this case
the reconstructed network approximately identifies the biological
process that best modulates the inhibition of v41 on free Shc in
the reference network. Often, a more refined identification of
near-optimal combinations is possible, and we further analyze
this issue in Section 4 for several choices of input time course
microarrays and of selections of target reactions.

In general, the displacement curves tend to agree only partially
and only for the largest displacements values. We also stress the fact
that often (but by no means always, see Appendix A) the sign of the
displacement is different for the reference network and the recon-
structed network, even when we have highly correlated absolute
values of the displacement curves, this is potentially a problem
because the sign of the displacement will determine whether the
control acts as an inhibitor or an enhancer of the target node.

It is likely that the cause for the sign switching is the inability
of the restricted l1 optimization in step R2 of the modified ASR
algorithm to detect the proper parameter in the presence of noise,
even when we enforce that such parameter should be present.
Regardless, the displacement curve of the reconstructed network
will be able to identify combinations of kinase inhibitors that
have high impact on the node and in the following we compare
only absolute values of median scaled displacement curves.

For example, we can compare Spearman’s rank correlation
(Gibbons and Chakraborti, 2003) of the absolute value of dis-
placement curves for corresponding nodes in reference and
reconstructed networks. A high Spearman’s rank correlation
would indicate a very good agreement of the pattern of increase
and decrease of large displacements for a given node. In Fig. 3(a),
we show three histograms of Spearman correlation of corre-
sponding median scaled displacement curves for reference and
reconstructed networks. All of them are obtained assuming that
the set S1 of reactions (see footnote 5) is the target of kinase
inhibitors, and that the modified ASR algorithm is given as input
three different sets of time course microarrays, i.e. three com-
pletely different sets of initial conditions and dynamical evolu-
tions of the EGF-R network. To avoid the impact of relatively
small displacement values, all displacement values below 10% of
the maximum value of each median scaled displacement curves
are set to zero before computing the Spearman correlations. Note
the very long right tail of large correlations, indication of excellent
agreement of displacement curves for several nodes. Such tail is
completely absent when, in Fig. 3(b), we compute the histograms
of the Spearman correlations of the median scaled displacement
curves of the nodes of the reference network, with randomly
permuted versions of the median scaled displacement curves of
the nodes of the reconstructed networks.

4. Homologous control of nodes

Our analysis so far gives a sense of the distinctive homology of
reconstructed and reference networks. Our final goal is to use
homology to obtain a nearly optimal kinase inhibitor combina-
tion, and we propose the following strategy:

4.1. Homologous control

C1 Given a set of trajectories in a signaling network, and a set of
reactions to be inhibited, use the modified ASR algorithm in
Section 2 to obtain a reconstructed, potentially homologous
network.

C2 Consider a large set of kinase inhibitor combinations that
satisfy some give constraint. For each kinase inhibitor

7 The separation of active combinations 6, 24, 41, 57, 72 from the main group
of active combinations 86–99 in Fig. 2 is only an artifact due to the specific
indexing of the pairs of reactions.
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combination generate time courses of the reconstructed net-
work for a variety of biologically meaningful initial conditions.

C3 Generate the median scaled displacement curve for a target
node protein. Identify the position of the few largest values of
the median scaled displacement curve for the reconstructed
network. The corresponding kinase inhibitor combinations are
candidates for nearly optimal suppression/enhancement of
the target node in the reference network.

Several possible choices of constraints could be enforced in step
C2 of this algorithm. For example, in personalized therapies we
could ask for the combination of kinase inhibitors with a mini-
mum total norm of the corresponding kinase inhibitor coefficients
k, to reduce total amount of inhibitors and therefore to avoid
toxicity and loss of specificity.

In the following, we continue to explore the experimental
protocol used to generate Figs. 2 and 3 in which only two
reactions at the time are inhibited. Recall that since we have 19
possible kinase inhibitor targets, there are a total of 190 distinct
pairs and singlets of kinase inhibitor therapies.

In our simulations there is remarkable agreement of the
location of large peaks of the median displacement curves for
reference and reconstructed networks, so that it seems possible to
use the largest median displacement values of the reconstructed
network to predict the likely location of near-optimal combina-
torial kinase inhibitions.

We cannot expect full overlapping of locations of large peaks and
therefore we suggest the following definition of near-optimality of
kinase inhibitor combinations: We assume that we found near-
optimal kinase inhibitor combinations if the locations of the top
three maxima in the median scaled displacement curve of a node of
the reconstructed network overlaps with the location of large median
scaled displacement values of the corresponding node in the refer-
ence network. A large displacement is defined here as a value that is a
large percentage, say 80%, of the mean of the largest three displace-
ment values of the given node in the reference network.

Remark 8. Note that we use, as a benchmark of success, the
mean of the largest three median displacement values, rather

than the absolute maximum displacement. We decided for this
criterium since in principle the absolute value may be so large
compared to the other displacements values that there may not
be other significant kinase inhibitor combinations with displace-
ment values close to the maximum.

Since the scaled displacement curves of many nodes of the
reconstructed network are not carrying any useful information on
the corresponding nodes of the reference network, we need to find
a way to filter the most useful nodes of the reconstructed network.

Our understanding is that the larger the displacements of a
node in the reconstructed network, the more likely the chance
that they convey some useful information about the correspond-
ing displacements of the node of the reference network. This is
the case because large displacements probably indicate an
increased sensitivity of the reconstructed network to specific
kinase inhibitors. The following procedure defines quantitatively
a notion of large displacements: we take the median nonzero
displacement value for each node in the reconstructed network,
and then the mean of these medians across all the nodes in the
network. We threshold to zero all displacements that are below
this value, so that we retain only displacement values that are
large relatively to the overall activity of the network.

After removing small displacements with the previous proce-
dure, we filter the nodes in the network by retaining only nodes
that have the mean of the remaining nonzero scaled displace-
ments above increasing large threshold values. Note that these
threshold values are dimensionless, since they relate to the scaled
displacements that are by definition dimensionless.

This filtering of nodes is very stringent, in the sense that only a
few nodes are left by this process, and yet it is quite effective at
identifying those displacement curves in the reconstructed net-
work that partially correlate to the corresponding displacement
curves of the reference network. In particular, in Fig. 4(b), the
dashed curves shows the number of nodes of the reconstructed
network that have mean of the large nonzero median displace-
ment values above the threshold specified on the horizontal axis.
Again, we show our results for three different sets of time course
microarrays given as input into the modified ASR algorithm.
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Fig. 3. In (a) we show three histograms of the Spearman correlation of the absolute value of corresponding median scaled maximum displacement curves in the reference
and reconstructed network. Each histogram corresponds displacement curves generated with one of three different choices of initial time course microarrays as input for
the modified ASR algorithm. In (b), we show the histograms of the Spearman correlations of the displacement curves of the nodes of the reference network, and randomly
permuted versions of the displacement curves of the nodes of the reconstructed networks. All displacement values below 10% of the maximum value of each displacement
curves are set to zero before computing the Spearman correlations.
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Fig. 4. Plots (a) and (b) refer to the set of 19 reactions S1. In plot (b) the three dashed curves show the number of nodes of the reconstructed network that have mean of
large median displacement values above the threshold specified on the horizontal axis. In plot (a), the three dashed curves show the ratios of nodes for which we identify
near-optimal kinase inhibitor combinations, as a function of the same threshold. The solid curves show the average ratio of nodes for which we identify near-optimal
kinase inhibitor combinations when the sequence of median scaled displacements for the reconstructed network has been randomly permutated (average computed over
100 permutations). Each color corresponds to the analysis of one of three different choices of initial time course microarrays as input for the modified ASR algorithm. Plots
(c), (e), (g), and (d), (f), (h) repeat the same analysis as in plots (a) and (b), respectively, for three more sets of kinase inhibitors (see footnote 8).
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The dashed curve in Fig. 4(a) shows the ratio of nodes for
which we identify near-optimal kinase inhibitor combinations (as
defined above), as a function of the same threshold as in Fig. 4(b).
We reach at least a 0.5 success ratio, meaning that, given
sufficiently high threshold, for 50% of the nodes that are not
filtered out by the threshold, we can identify near-optimal kinase
inhibitor combinations. The catch is of course that only a few
nodes display such marked homology in the reconstructed med-
ian scaled displacement curve. The 0.5 ratio mark is reached when
the threshold leave respectively 10, 6, and 2 nodes for the three
time course microarray inputs to the modified ASR algorithm. On
the other hand, it is striking that we can eventually reach 100%
success ratio (respectively, for 6 and 3 nodes) for two of the
microarray inputs.

The solid curves in the same plot 4(a) shows the average
percentage of nodes for which we identify near-optimal kinase
inhibitor combinations when the sequence of median scaled
displacements for the reconstructed network has been randomly
permutated (average computed over 100 permutations). Near-
optimality for the random scrambling of the data is much lower,
especially for the nodes left by higher threshold values. The mean
of the ratio of nodes for which we find near-optimal combinations
in the case of random permutation of the reconstructed displace-
ment curves in Fig. 4(a) is only around 0.1 (computed across all
threshold values and all three time course microarrays inputs).
For nodes selected with high values of threshold, our method is at
least about five times more accurate than a random selection of
kinase inhibitors in finding near-optimal combinations, and up to
10 times more accurate for some selected nodes with two
microarray inputs.

To put things in perspective, with the randomly permuted
scaled displacements, on average it would be necessary to select
randomly between 18 and 30 kinase inhibitor combinations
(depending on the microarray input instance) to make sure that
we have at least a 0.5 success ratio, reachable with only three
kinase inhibitor combinations by the homologous control scheme.
This represents a large potential saving, due to the data-based
narrowing of combinatorial possibilities, in the search for appro-
priate kinase inhibitor therapies.

Fig. 4(c–h) show the results of the same analysis performed in
Fig. 4(a and b), for three other selections of 19 kinase inhibitors,8

and several distinct initial microarrays. The main criterion under-
lying the choice of reactions has been the availability, for most of
the selected reactions, of inhibitory drugs that might be used to
block the downstream signaling. Several example exist that have
either passed FDA approval or are currently in clinical trials, like
monoclonal antibodies or small molecules inhibitors that target
EGF-R (Cetuximab and Gefitinib, respectively) and small molecule
inhibitors of the Raf/MEK/ERK axis (Sorafenib). The number of
reactions that satisfy this experimental plausibility criterium is
relatively small in the cited EGF-R network, and there is a certain
degree of overlapping among these sets.

Note that the success curve is not monotone for one instance
(red dashed line) in Fig. 4(c), indicating that some strongly
homologous nodes are actually removed as the threshold value
increases. This raises the hope that even better success rates could
be achieved with more sophisticated threshold processes. In
particular, it may be beneficial in some cases to have an adaptive

threshold that is a variable multiple of the mean of medians used
to pre-condition the displacement curves. This may allow for a
larger number of nodes to be retained.

The success rate of homologous control is, for high enough
threshold value, at least 50% for reactions analyzed in Fig. 4(c–f).
Fig. 4(g and h) is, instead, significantly different, in that, for one
instance of microarray (blue dashed curves) no displacement
curve of the reconstructed network passes the filtering process.
A careful analysis of the different selections of kinase inhibitors
shows that, while their distribution in the network is very similar,
the actual parameters of the reactions selected for inhibition are
significantly different for Fig. 4(g and h). Specifically, the number
of large (bigger than one) forward and backward kinetic rates is
about a third of the corresponding number of large kinetic rates in
the other three selections of 19 kinase inhibitors. This observation
may justify the failure of our method for one instance of initial
microarray and it is an important point that both shows the limits
of our technique, and suggests that, for the method to be
eventually applied in practice, care should be made to select,
when possible, kinase inhibitors that act on relatively fast reac-
tions. Most nodes that show sizable displacement curves are
likely to be close to these fast reactions, when targeted by kinase
inhibitors.

Remark 9. Another point that needs clarification is the extent to
which the modified ASR method is essential to the success of the
identification of near-optimal combinations. In other words, is it
necessary to know the nodes that are involved in each of the 19
reactions that we target for inhibition? The answer is affirmative:
without knowledge of the presence of these reactions, many of
the relevant parameters are overlooked by the standard ASR
algorithm, in the sense that either they are not found, or their
value is underestimated. We find ourself in a scenario very similar
to one of the instances of Fig. 4(g and h), where very few nodes in
the reconstructed network have any response to the kinase
inhibitors (not shown). In general, we expect the performance
of the method to improve with larger sets of kinase inhibitors and
to worsen with smaller sets. However, large sets of kinase
inhibitors are likely to arise in the experimental setting and this
is the scenario where the method should work best.

5. Discussion and conclusion

Our method for homologous control is an attempt to develop a
signal processing approach to network dynamics and it has the
potential of greatly reducing the experimental load necessary to
find near-optimal combinations of kinase inhibitors for a list of
potential target reactions. Its strength is in the ability to work
with very limited, noisy data and with networks that have a large
number of nodes, comparable with realistic time course micro-
array data. In this last section we would like to point out several
broad areas for further development that are intimately related to
the limitations of current experimental protocols for measuring
node activity of signaling networks.

Our approach is dependent on the choice of a region R where
we select the initial conditions, and on the duration T of the time
series, so that we could say that the notion of homologous
systems and signal processing of networks is transient based,
i.e. it depends on the choice of the cylinder R& ½0,T(. This raises
some issue on the stability of the homology, if we run the
reference system for a time T, how long should we run the
reconstructed system?

One characteristic of the reconstructed network is that its
dynamics displays slower changes when compared to the refer-
ence network, probably because the parameters of each term in
the equations are not as large as the true parameters, so that the

8 The reactions selected for inhibition corresponding to Fig. 4(a,b,c,d,e,f,g,h)
are, respectively: (S1) v19, v20, v23, v27, v29, v41, v45, v47, v55, v60, v66, v67,
v70, v74, v76, v83, v87, v89, v97; (S2) v1, v2, v3, v10, v16, v28, v29, v36, v37, v45,
v46, v47, v48, v64, v75, v94, v95, v126, v130; (S3) v1, v2, v12, v23, v27, v33, v34,
v36, v45, v53, v56, v74, v76, v78, v89, v97, v111, v129, v130; (S4) v1, v3, v11, v18,
v22, v26, v29, v33, v39, v42, v44, v52, v65, v67, v75, v88, v96, v128, v148. Refer to
Schoeberl et al. (2002) for an actual description of the reactions.
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rate of change of nodes will generally be different for the
reference network and the reconstructed one. Nevertheless, the
type of curves that we observe are usually transients with
eventual relaxation, so that T can be chosen for both networks
as the time such that either the trajectories of the networks have
relaxed to their steady state or they show consistent divergence.

A possible strategy to improve parameter estimation for large
networks is to run the reconstruction algorithm several times
with different choices of the random terms; collect for each node
the terms that display significant activity for at least one repeti-
tion of the reconstruction algorithm; repeat one last time the
reconstruction for each node, only using the nodes previously
selected as significant. This bootstrap version of the reconstruc-
tion algorithm may improve homology with the reference system.

An important question is to determine how infrequently we
can sample the trajectories of a network and infer a well behaved
reconstructed network that is homologous to the reference net-
work. In some sense, we need a sampling theory of networks;
note that the sampling is done for the trajectories, and it is a
signal processing operation, but the notion of well behaved
system is essential a dynamical one.

To gain a sense of the difficulty of this endeavor, consider that
the trajectories’ sampling rate used in this paper clearly do not
allow for high true positive rates and low false positive rates of
identification of parameters in the reconstructed network. Signifi-
cant noise is observed in the network parameters’ estimation, even
in the parameters of the reactions selected for kinase inhibition.

Indeed, the actual trajectories generated by the reconstructed
network do not need to show any strong resemblance to those of
the reference network. The very notion of homologous networks
is designed to be useful exactly when we undersample the
network trajectories so severely that we do not hope for a proper
network reconstruction. As we showed in this paper, as little as
220 data points per node are sufficient to obtain partial homol-
ogy, possibly because the sensitivity of the initial dynamics of the
trajectories to kinase control may be predictive of the sensitivity
over the full transient leading to relaxation to the steady state.
The theoretical determination of the relation between number of
samples per node and network homology will require extensive
study and comparison of several biologically meaningful models
of pathways.

It is also crucial to understand the performance of our method
when dealing with incomplete networks where only a portion of
the nodes is measured. We tested, for example, the nearly optimal
kinase prediction algorithm C1–C3 on a module of the EGF-R
model comprising only 16 variables, with only two reactions
selected for kinase inhibition, and we were indeed able to observe
homology for several nodes even though many nodes were
subject to large feedbacks from unmeasured nodes.9

It is yet to be seen whether a random choice of a subset of nodes
belonging to a pathway are sufficient to achieve homologous
control. Of course, for our method to make sense, at least all nodes
involved in reactions to be inhibited and the target node must be
measured. We need to perform a detailed study in which we
identify the minimum number of variables (and their distribution)
that need to be measured to achieve homologous control.

The final goal of our approach is the experimental validation of
homologous control over a broad range of signaling networks in
defined biological contexts such as cell proliferation, survival and
differentiation. The availability of hundreds chemical compounds
with known specific inhibitory activity allows to test the efficacy

of the predicted near-optimal kinase inhibitor combinations into
cell line models. In particular, it is possible to exploit cancer cell
lines obtained from diverse types of tumor and to train the
modified ASR method with reverse-phase protein microarray data
containing time-courses for each cell line under serum addition or
hypoxic stimuli. The molecular dynamics driven by such condi-
tions would allow a validation of the in-silico reconstructed
network in a specific and biologically meaningful context. The
combinations of inhibitors that are found by our method in this
scenario could then be tested in vitro (and eventually in vivo in
immunodeficient mice) to understand their ability to affect
proliferation and survival mechanisms of tumor’s cells. Such an
approach has a great potential in the identification of novel
therapeutic strategies for cancer. We stress moreover that there
is no technical reason to restrict homologous control strategies to
the analysis of the EGF-R signaling network, or even to protein
signaling networks. A more general choice of terms for the model
in Eq. (1) would allow our method to be tested for multiscale
heterogeneous systems, where genomic, proteomic and metabolic
compounds are related in a single network.
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Appendix A. Sign concordance and sign switching

One difficulty summarizing the qualitative properties of dis-
placement curves described in Section 3 is the tremendous
variability of the individual nodes of the network. However, it is
clear that sign switching and sign concordance of the displace-
ment curves for high displacement values are both common, and
not due to random effects.

For example, in Fig. 5(a) we show the number of kinase
inhibitor combinations, out of the total 190 combinations used
in the protocol of Figs. 2 and 3, that display opposite sign, as a
function of a threshold on displacement curves of both reference
and reconstructed networks. For each node, the threshold sets to
zero all displacements that are below the percentage of the
largest displacement value denoted in the ordinate axis. Red
curves are for the five nodes that have the highest number of
combinations with sign switching. Blue curves are generated in a
similar fashion, but after the median scaled displacement values
have been permuted within the displacement curve of each node.

Note the very distinct behavior at the 20% threshold level
between true and randomized curves in Fig. 5(a). Instead,
Fig. 6(a) shows, for each node of the reconstructed network, the
ratio of nonzero median displacement values that display sign
switching with respect to the reference network, in the case of a
20% threshold. Many nodes, at this threshold level, exhibit large
percentages of sign switching.

Remark A1. We stress that this sign switching is by no means
consistently observed for all nodes or for specific groups of kinase
inhibitor combinations. For example, the kinase inhibitor combi-
nations corresponding to indexing from 85 to 100, shown in Fig. 2
to have vigorous control on at least a node of the network, have
roughly the same number of nodes that display uniform sign
switch and uniform sign concordance for large displacement
values. If we study sign concordance rather than sign switching,

9 In this simulation (data not shown) we used 550 data points, and initial
condition for each node were kept very low for this simulation, while EGF was
very large.
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Fig. 5. Red starred curves in (a)–(c) show the number of kinase inhibitor combinations of the five nodes of reference and reconstructed networks that display, respectively,
the largest: (a) sign switching; (b) sign concordance; and (c) concordance of nonzero median displacement values. Blue starred curves are generated in a similar fashion,
but after the median scaled displacement values of the reconstructed network have been permuted within the displacement curve of each node. Curves are plotted as
functions of a threshold on displacement curves of both reference and reconstructed networks. For each node, the threshold sets to zero all displacements that are below
the percentage (of the largest displacement value) denoted in the ordinate axis.
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Fig. 6. (a)–(c) show, for each node of the reconstructed network, the ratio of nonzero median displacement values that display, respectively: (a) sign switching at the 20%
threshold level; (b) sign concordance at the 20% threshold level; and (c) concordance of nonzero displacement values at the 40% threshold level. For each node, the
threshold sets to zero all displacements that are below the given percentage of the largest displacement value.
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a very similar qualitative behavior as in Figs. 5(a) and 6(a) is
observed, as can be inferred from Figs. 5(b) and (6b).

In Figs. 5(c) and 6(c), we follow essentially the same procedure
as the one that we used to explore sign switching, but focusing on
the concordance of nonzero displacements. In Fig. 5(c), we show
the number of kinase inhibitor combinations, out of the total 190,
that display concordance of nonzero displacement values, as a
function of the same threshold on median displacement curves of
both reference and reconstructed networks used in Fig. 5(a) and
(b). Red curves are for the five nodes that have the highest
number of combinations with corresponding nonzero median
displacement values. Blue curves are generated from permuted
median displacement curves.

In Fig. 5(c) we see distinct behavior between real and rando-
mized data especially around the 40% threshold level. The fact
that this percentage is higher than the one observed for the
analysis of signs shows that sign concordance and sign switching
are more statistically significant than nonzero concordance for
lower threshold. Fig. 6(c) shows, for each node, the ratio of
nonzero displacement values for the reconstructed network that
is matched by nonzero displacement values for the corresponding
node of the reference network, at the 40% threshold level. Many
nodes, at this threshold level, exhibit almost complete overlap-
ping of the nonzero displacement values of reconstructed net-
work with (some of) the nonzero displacement values of
reference network.

Appendix B. Recursive augmented sparse reconstruction with
selected target reactions

In this appendix we give details of the recursive augmented
sparse reconstruction algorithm to be used in the presence of
target reactions.10 Suppose we are given N node variables from a
network and that for each variable it is possible to generate R
trajectories Xn,r r¼ 1, . . . ,R with different initial conditions, uni-
formly sampled at L points. We build now the left-hand side of (1)
and the individual terms in the right-hand side.

Call Xn,r the vector Xn,rðtÞ$Xn,rðt0Þ where t takes all L sampled
values. For a given vector g(t), t¼ t0, . . . ,tL, let I(g) be the vector
whose l-th component is the sum

Pl
i ¼ 0 gðtiÞ.

Write Yn ¼ ½Xn,1, . . . ,Xn,R(, Gn ¼ ½IðXn,1Þ, . . . , IðXn,RÞ(, n¼ 1, . . . ,N,
Gij ¼ ½IðXi,1Xj,1Þ, . . . ,IðXi,RXj,RÞ(. Finally, let J denote the unit vector
with same length as Yn.

Select a collection of potential target reactions vs ¼ asxis xjs$
bsxks , s¼ 1, . . . ,S. The basic process to identify the links among the
nodes is the following. For each node n with n¼ 1, . . . ,N:

R1 Choose an attenuation coefficient bq for the quadratic terms
Gij. Let ng, g ¼ 1,: :,G, be discrete random vectors normally
distributed scaled to have norm 1. Denote by j j the 2-norm of
a vector and let Ĝl be the matrix whose columns are all the
vectors Gi=jGij, Ĝq be the matrix whose columns are all
possible vectors Gij=jGijj. Let NG be the matrix whose columns
are the random vectors ng scaled to have norm 1. Choose G
large enough to have the matrix Z ¼ ½JĜl,bqĜq,NG( with small
condition number (say less that 102).

R2 Set a temporary representation matrix M, for each s¼ 1, . . . ,S,
if the node n belong to the set fis,js,ksg, add the vectors
Gks=jGks j and Gisjs=jGisjs j as columns to the matrix M.

R3

Let ZM ¼ ½MNG(. Find the minimal l1 solution to the under-
determined system Yn ¼ ZMaM . Let aM be the restriction of a to
the columns of M, set Yn ¼ Yn$MaM :

R4 Find the minimal l1 solution to the underdetermined system
Yn ¼ Za. If in part R2 we generated a nonzero matrix M, then
add to the components of a associated to the columns of M
the corresponding components of aM .

R5 Choose a threshold Tn and let aTn be the coefficients in a larger
than Tn. The reconstructed network equation for xn will have
only linear and quadratic terms that correspond to coeffi-
cients in aTn , and their coefficients will be the coefficients of
aTn divided by the norm of the corresponding jGij, if a linear
term, and jGijj if a quadratic term.
In Napoletani et al. (2008) we showed that there is consider-
able flexibility in the choice of the number G of random terms
and in the choice of the attenuation coefficient bq; in this work
we use G¼1500 and bq ¼ 0:8. The threshold Tn that selects the
parameters to be used in the reconstructed network is taken to
be a very low 2% of the maximummagnitude parameter for the
corresponding node. This choice makes sure that most inferred
node directed links among nodes are retained.
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