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Consider a difference equation whose evolution rule is defined as the maximum of
several first-order equations. It is shown that if the first-order equations are individually
contractive, then the aggregated max-type equation converges to a fixed point.
A corresponding result holds for local convergence.
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1. Introduction

Let p be a positive integer and let f i : R! R for i ¼ 1; . . . ; p be real-valued functions.

Given the initial data x1; . . . ; xp, we define the max-type difference equation

xn ¼ max{f 1ðxn21Þ; f 2ðxn22Þ; . . . ; f pðxn2pÞ}: ð1Þ

Definition 1.1. The function f is called contractive if there exists 0 # a , 1 and a real

number r such that j f ðxÞ2 rj # ajx2 rj for all x.

Definition 1.2. The solution {xn}
1
n¼1 of a difference equation is called globally

convergent if there exists r such that for every set of initial values, limn!1xn ¼ r. In this

case, the equilibrium r is called globally attractive.

We will show that if the f i are contractive with fixed points ri, then the difference

equation (1) is globally convergent, or more precisely, converges in the limit to max{ri}

for any set {x1; . . . ; xp} of initial values. As an example, consider the difference equation

xn ¼ max A1x
a1

n21; . . . ;Apx
ap

n2p

n o
; ð2Þ

where the Ai . 0 and 21 , ai , 1 for i ¼ 1; . . . ; p. By a logarithmic change of

coordinates, equation (2) is converted to a difference equation of type (1), and it can be

concluded from Corollary 2.4 that (2) converges to maxA
1=ð12aiÞ
i for all positive initial

conditions.

Max-type difference equations have been considered by a number of authors,

including [1–9,11–14]. Ladas poses an interesting array of problems in [9]. Periodic and
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more complicated behaviour is typical when the contractive hypothesis does not hold.

In this article, we gather together general situations when contractivity of individual first-

order components translates to convergence of the aggregated difference equation with

maximum.

Theorem 2.3 below is the main global convergence result, proved in a context slightly

more general than (1). The techniques used to prove Theorem 2.3 can also be applied to

prove a local convergence version, Theorem 3.2.

2. Global convergence

The following two lemmas provide the facts needed to prove the main results.

Lemma 2.1. Let p be a positive integer, r and 0 # a , 1 real numbers, and let {xn}
1
n¼1 be

a sequence of real numbers. Assume that for each n there exists i, possibly depending on n,

1 # i # p, such that jxn 2 rj # ajxn2i 2 rj. Then limn!1xn ¼ r.

Proof. For each positive integer j, consider

Mj ¼ max
1#i#p

jxjpþ12i 2 rj:

It suffices to show that Mjþ1 # aMj for all j. To do this, we show jxjpþk 2 rj # aMj for

1 # k # p by induction.

For k ¼ 1, jxjpþ1 2 rj # ajxjpþ12i 2 rj for some 1 # i # p by hypothesis, and so

jxjpþ1 2 rj # aMj. For 1 , k # p, there exists 1 # i # p such that

jxjpþk 2 rj # ajxjpþk2i 2 rj

# amax { max
1#m#k21

jxjpþm 2 rj; max
0#m#p2k

jxjp2m 2 rj}

# amax {aMj;Mj} # aMj;

completing the induction argument.

It follows immediately that Mjþ1 # aMj, and so limj!1Mj ¼ 0. A

Lemma 2.2. Let u1; u2, y1 # y2 and s2 # s1 be real numbers, and assume jyi 2 sij #

ajui 2 sij for some 0 # a , 1 and i ¼ 1; 2. Then jy2 2 s1j # ajuj 2 s1j for j ¼ 1 or j ¼ 2.

Proof. If y2 # s1, then jy2 2 s1j ¼ s1 2 y2 # s1 2 y1 ¼ js1 2 y1j # aju1 2 s1j; so the

conclusion is proved with j ¼ 1.

We may henceforth assume that s1 , y2. Note that either u2 , s2 or u2 . s1, for if

s2 # u2 # s1, then

y2 2 s2 ¼ jy2 2 s2j # aju2 2 s2j ¼ aðu2 2 s2Þ # aðs1 2 s2Þ , aðy2 2 s2Þ;

a contradiction. There are two remaining cases. A
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Case 1. s1 , y2 and u2 , s2.

Since jy2 2 s2j ¼ y2 2 s2 $ y2 2 s1, it follows that

jy2 2 s1j ¼ y2 2 s1 # y2 2 s2 ¼ jy2 2 s2j

# aju2 2 s2j ¼ aðs2 2 u2Þ # aðs1 2 u2Þ ¼ ajs1 2 u2j;

and we may set j ¼ 2.

Case 2. s1 , y2 and s1 , u2.

In this case,

jy2 2 s1j ¼ y2 2 s1 ¼ y2 2 s2 þ s2 2 s1 ¼ jy2 2 s2j þ s2 2 s1

# aju2 2 s2j þ s2 2 s1 ¼ aðu2 2 s2Þ þ s2 2 s1

¼ aðu2 2 s1Þ þ ða2 1Þðs1 2 s2Þ

# aðu2 2 s1Þ ¼ aju2 2 s1j;

so we may set j ¼ 2, completing the proof. A

Theorem 2.3. Consider p nonnegative integers q1; . . . ; qp, and let 0 # a , 1. Assume for

each i, j satisfying 1 # i # p; 1 # j # qi there exists a function f ij : R! R and a real

number rij satisfying

j f ijðxÞ2 rijj # ajx2 rijj;

for all x. Then for any set {x1; . . . ; xp} of initial values, the solution of the difference

equation

xn ¼ max
1#i#p;1#j#qi

{f ijðxn2iÞ}; ð3Þ

converges to maxi; j rij.

Proof. We will use Lemma 2.1 where r ¼ rim jm ¼ maxi; jrij. For each n, choose i0; j0

such that maxi; j{f ijðxn2iÞ} ¼ f i0j0 ðxn2i0 Þ. Next, apply Lemma 2.2 with u1 ¼ xn2im ; y1 ¼
f imjm ðxn2im Þ; u2 ¼ xn2i0 ; y2 ¼ f i0j0 ðxn2i0 Þ; s1 ¼ rimjm and s2 ¼ ri0j0 . Lemma 2.2 implies that

jxn 2 rimjm j ¼ jmax
i;j

{f ijðxn2iÞ}2 rimjm j # ajz2 rimjm j;

where z ¼ xn2im or xn2i0 . This satisfies the hypotheses of Lemma 2.1, so

lim
n!1

xn ¼ rimjm :

Setting all qi ¼ 1 in Theorem 2.3 covers the special case referred to as equation (1) in

the introduction.
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Corollary 2.4. Let r1; . . . ; rp be real numbers and assume f i : R! R for i ¼ 1; . . . ; p
satisfy j f iðxÞ2 rij # ajx2 rij for all x, where 0 # a , 1. Then for any set {x1; . . . ; xp} of
initial values, the solution of difference equation

xn ¼ max{f 1ðxn21Þ; . . . ; f pðxn2pÞ}; ð4Þ

converges to maxi ri as n!1.

Example 2.5. It follows from Corollary 2.4 that the difference equation

xn ¼ max
1

a1 þ x2n21

; . . . ;
1

ap þ x2n2p

( )
; ð5Þ

where ai . 3=4 for i ¼ 1; . . . ; p is globally convergent.

In fact, one can check that the first derivative of f ðxÞ ¼ 1=ðaþ x2Þ is always smaller

than 1 in absolute value if a . 3=4, so the mean value theorem implies that the hypotheses

of Corollary 2.4 are satisfied when ri denotes the real root of the equation x3 þ aix ¼ 1.

The root ri lies between 0 and 1, and is a decreasing function of ai. Therefore, Corollary

2.4 says that for any initial values {x1; . . . ; xp}, the solution {xn}
1
n¼1 of (5) is convergent to

the real root rim of the equation x3 þ aimx ¼ 1, where the im is the integer satisfying

aim ¼ min1#i#p{ai}.

Example 2.6. In [13], Sun considers the difference equation

xn ¼ max A1x
a1

n21; . . . ;Apx
ap

n2p

n o
; ð6Þ

where Ai . 0;21 , ai , 0 for i ¼ 1; . . . ; p and x1; . . . ; xp . 0 are initial values. Sun

proves that positive solutions are globally convergent if p ¼ 2, and conjectures that the

same holds for p . 2.

The conjecture is proved in [12]. An explicit proof is given there for p ¼ 3, along

with the comment that the proof for general p is only technically complicated. One can

view our contribution in this article as straightening out these technical complications.

We will also enlarge the range of the ai by assuming 21 , ai , 1 and let p be an

arbitrary positive integer. Set yn ¼ log xn in (6). In the new coordinates, the ith equation is

yn ¼ aiyn2i þ log Ai and due to monotonicity of the logarithm, (6) is replaced with

yn ¼ max{a1yn21 þ log A1; . . . ;apyn2p þ log Ap}:

For any set of positive initial values x1; . . . ; xp, the yn sequence converges to the maximum

logAi=ð12 aiÞ, so that

lim
n!1

xn ¼ max
1#i#p

A
1=ð12aiÞ
i :

This proves convergence of (6) for 21 , ai , 1;Ai . 0, and for all positive initial

conditions.
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Example 2.7. The hypothesis jaij , 1 of Theorem 2.3 is necessary. For example, the

equation

xn ¼ max{2 xn21; xn22}; ð7Þ

has nonconvergent solution {21; 1;21; 1; . . . }. Much more varied dynamics follows

when the contractiveness hypothesis is relaxed, as discussed in Ladas [9] and references

therein.

Another special case of Theorem 2.3 is the following, where we set p ¼ 1.

Corollary 2.8. Let q be a positive integer, and consider real numbers rj and functions

f j : R! R for j ¼ 1; . . . ; q satisfying

j f jðxÞ2 rjj # ajx2 rjj;

for all x where 0 # a , 1. Then for any initial value x1, the solution of the difference

equation

xn ¼ max{f 1ðxn21Þ; . . . ; f qðxn21Þ}; ð8Þ

converges to maxjrj.

Example 2.9. In analogy with Example 2.6, the solution of the difference equation

xn ¼ max A1x
a1

n21; . . . ;Aqx
aq

n21

� �
; ð9Þ

where Aj . 0;21 , aj , 1 for j ¼ 1; . . . ; q is convergent to

max
1#j#q

A
1=ð12ajÞ

j :

for any initial value x1, according to Corollary 2.8.

Example 2.10. Theorem 2.3 establishes convergence of the difference equation

xn ¼ max{a1 þ sin b1xn21; c1 þ cos d1xn21; a2 þ sin b2xn22; c2 þ cos d2xn22};

where we assume a ¼ max{jb1j; jb2j; jd1j; jd2j} , 1. Define the functions f i1ðxÞ ¼

ai þ sin bix and f i2ðxÞ ¼ ci þ cos dix. Under the assumptions, for 1 # i; j # 2, j f 0ijðxÞj #

a , 1 for all x, and by the mean value theorem, each f ij is globally contractive to a unique

fixed point rij. (In particular, each rij is the unique solution of the equation x ¼ f ijðxÞ.)

Thus, Theorem 2.3 can be applied with p ¼ q1 ¼ q2 ¼ 2 to conclude that for any set of

initial values {x1; x2},

lim
n!1

xn ¼ max
1#i#2;1#j#2

rij:

3. Local convergence

Definition 3.1. We call the constant solution xn ¼ r of a difference equation locally

attractive if for some p-dimensional open neighbourhood of initial values

ðx1; . . . ; xpÞ ¼ ðr; . . . ; rÞ, the solution converges to the constant solution r.
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This definition concerns local convergence, for cases when nearby initial values, but

perhaps not all initial values, are attracted to a given constant solution. In the context of

max-type equations, in order to make conclusions about local convergence, an extra

hypothesis that is not strictly local needs to be added to control the contractivity between

the individual fixed points, as shown in the next theorem.

Theorem 3.2. Consider p nonnegative integers q1; . . . ; qp and let 0 # a , 1. Assume for

each i, j satisfying 1 # i # p; 1 # j # qi there exists a continuously differentiable

function f ij : R! R and a real number rij satisfying f ijðrijÞ ¼ rij. Let im; jm be integers

satisfying rimjm ¼ maxi;jrij. Assume that for each i; j; j f 0ijðxÞj # a for rij # x # rimjm .

Then the constant solution xn ¼ rimjm of the difference equation

xn ¼ max
1#i#p;1#j#qi

{f ijðxn2iÞ}; ð10Þ

is locally attractive.

Proof. Choose e . 0 such that for each i, j, j f 0ijðxÞj # a1 ; ðaþ 1Þ=2 , 1

for rij 2 e , x , rimjm þ e . For each i, j and rij 2 e , x , rimjm þ e , the mean

value theorem implies j f ijðxÞ2 rijj # a1jx2 rijj. Define the open set U ¼ {ðx1; . . . ; xpÞ
: jxi 2 rimjm j , e ; 1 # i # p}.

The remainder of the proof closely parallels the proof of Theorem 2.3. Choose

ðx1; . . . ; xpÞ from U and for each n . p, choose i0; j0 such that xn ¼ maxi; j
{f ijðxn2iÞ} ¼ f i0j0 ðxn2i0 Þ. Apply Lemma 2.2 with u1 ¼ xn2im ; y1 ¼ f imjm ðxn2im Þ; u2 ¼
xn2i0 ; y2 ¼ f i0j0 ðxn2i0 Þ; s1 ¼ rimjm and s2 ¼ ri0j0 . Lemma 2.2 implies that

jxn 2 rimjm j ¼ jmax
i;j

{f ijðxn2iÞ}2 rimjm j # a1jz2 rimjm j;

where z ¼ xn2im or xn2i0 . This implies by induction that (a) xn belongs to U and (b) we can

apply Lemma 2.1 to conclude that limn!1xn ¼ rimjm . A

The qi ; 1 special case is the local version of Corollary 2.4.

Corollary 3.3. Assume that the continuously differentiable functions f i : R! R and real

numbers ri for i ¼ 1; . . . ; p satisfy f iðriÞ ¼ ri. Let im be an integer satisfying

rim ¼ max1#i#pri, and assume that there exists 0 # a , 1 such that for 1 # i # p,

j f 0iðxÞj # a for ri # x # rim . Then the constant solution xn ¼ rim of the difference equation

xn ¼ max{f 1ðxn21Þ; . . . ; f pðxn2pÞ}; ð11Þ

is locally attractive.

Example 3.4. Define

xn ¼ max{xn21e
a1ð12xn21=c1Þ; . . . ; xn2pe

apð12xn2p=cpÞ}; ð12Þ

where each f iðxÞ ¼ xeaið12x=ciÞ in (11) is a Ricker map [10] with growth parameter ai $ 0

and carrying capacity ci $ 0. Corollary 2.4 does not apply in this range since f 0ið0Þ ¼

eai $ 1 and so f i is not contractive.
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If 0 , ai , 2, it is easily checked that ci is a stable fixed point for the individual map

f i. In fact, the derivative of f iðxÞ ¼ xeaið12x=ciÞ is f 0iðxÞ ¼ ð12 aix=ciÞe
aið12x=ciÞ, and so

j f 0iðciÞj ¼ j12 aij , 1. Furthermore, the second derivative shows that f 0iðxÞ is decreasing

on the interval ½ci; 2ci=aiÞ from f 0iðciÞ ¼ 12 ai to f 0ið2ci=aiÞ ¼ 2eai22, and increasing on

the interval ð2ci=ai;1Þ from f 0ið2ci=aiÞ ¼ 2eai22 to 0. We conclude that j f 0iðxÞj #

max{j12 aij; e
ai22} , 1 for ci # x. Using this fact, we can verify the main hypothesis of

Corollary 3.3, that for each i, j f 0iðxÞj ¼ jð12 aix=ciÞe
aið12x=ciÞj # a ; maxi{j12

aij; e
ai22} , 1 for ci , x , cim . Therefore, the constant solution {cim ; cim ; . . . } is locally

attractive for the max-type equation (12), where cim ¼ max{ci} is the maximum of the

carrying capacities of the p individual Ricker maps.

Interestingly, the result is independent of the relative values of the ai, as long as they

lie in the range ð0; 2Þ. This solution is not globally attractive, since for example the zero

solution does not converge to it. However, since the zero solution is unstable, the solution

of (12) converges to cim for initial data near zero, and in fact for almost every positive

initial condition.

The p ¼ 1 special case of Theorem 3.2 is the local version of Corollary 2.8.

Corollary 3.5. Let q be a positive integer and consider real numbers rj and continuously

differentiable functions f j : R! R for j ¼ 1; . . . ; q satisfying f jðrjÞ ¼ rj. Let m be an

integer satisfying rjm ¼ max1#j#qrj, and assume that there exists 0 # a , 1 such that for

1 # j # q, j f 0jðxÞj # a for rj # x # rjm . Then the constant solution xn ¼ rjm of the

difference equation

xn ¼ max{f 1ðxn21Þ; . . . ; f qðxn21Þ}; ð13Þ

is locally attractive.

Example 3.6. Consider the difference equation

xn ¼ max{ðxn21 2 a1Þ
2; ðxn21 2 a2Þ

2; . . . ; ðxn21 2 aqÞ
2}; ð14Þ

where 2ð1=4Þ , aj , 3=4 for j ¼ 1; . . . ; q. The fixed point rj ¼ aj þ ð1=2Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aj þ ð1=4Þ

p
is an attracting fixed point of f jðxÞ ¼ ðx2 ajÞ

2. Note that each fixed point

lies in the interval ½0; 1=4Þ.
In addition, note that for each j and for x between x ¼ rj and x ¼ 1=4, f 0jðxÞ is

increasing from f 0jðrjÞ ¼ 12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aj þ 1

p
to f 0jð1=4Þ ¼ 2ð1=42 ajÞ, so that j f 0jðxÞj

# max{j12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aj þ 1

p
j; j2ð1=42 ajÞj} , 1, satisfying the main hypothesis of Corollary

3.5. Therefore, the constant solution xn ¼ rjm , the maximum of the q individually attracting

fixed points of the f j, is locally attractive for the max-type equation (14).

Remark 1. Analogues of the convergence Theorems 2.3 and 3.2 also hold for min-type

difference equations, by applying the max versions to 2f iðxÞ. For example, the local

version for min-type equations takes the following form.

Theorem 3.7. Consider p nonnegative integers q1; . . . ; qp, and let 0 # a , 1. Assume for

each i, j satisfying 1 # i # p; 1 # j # qi there exists a continuously differentiable

function f ij : R! R and a real number rij satisfying f ijðrijÞ ¼ rij. Let im; jm be integers
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satisfying rimjm ¼ mini; jrij. Assume that for each i; j; j f 0ijðxÞj # a for rimjm # x # rij. Then

the constant solution xn ¼ rimjm of the difference equation

xn ¼ min
1#i#p;1#j#qi

{f ijðxn2iÞ} ð15Þ

is locally attractive.

Acknowledgement

The research was partially supported by National Science Foundation grant DMS-0811096.

References

[1] K. Berenhaut, J. Foley, and S. Stevic, Boundedness character of positive solution of a max
difference equation, J. Difference Equ. Appl. 12 (2006), pp. 1183–1189.

[2] W.J. Bride, E.A. Grove, C.M. Kent, and G. Ladas, Eventually periodic solutions of
xnþ1 ¼ max{1=xn;An=xn21}, Comm. Appl. Nonlinear Anal. 6 (1999), pp. 31–34.

[3] Y. Chen, Eventually periodicity of xnþ1 ¼ max{1=xn;An=xn21} with periodic coefficients,
J. Difference Equ. Appl. 11 (2005), pp. 1289–1294.

[4] C. Cinar, S. Stevic, and I. Yalcinkaya, On positive solutions of a reciprocal difference equation
with minimum, J. Appl. Math. Comput. 17 (2005), pp. 307–314.

[5] J. Feuer, On the eventual periodicity of xnþ1 ¼ max{1=xn;An=xn21} with a period-four
parameter, J. Difference Equ. Appl. 12 (2006), pp. 467–486.

[6] E.A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman &
Hall/CRC Press, 2005.

[7] E.A. Grove, C. Kent, G. Ladas, and M. Radin, On xnþ1 ¼ max{1=xn;An=xn21} with a period 3
parameter, Fields Inst. Commun. 29 (2001), pp. 161–180.

[8] C.M. Kent and M.A. Radin, On the boundedness nature of positive solutions of the difference
equation xnþ1 ¼ max{An=xn;Bn=xn21} with periodic parameters, Dyn. Contin. Discrete
Impuls. Syst. Ser. B Appl. Algorithm (2003), pp. 11–15.

[9] G. Ladas, On the recursive sequence xnþ1 ¼ max{A0=xn; . . . ;Ak=xn2k}, J. Difference Equ.
Appl. 2 (1996), pp. 339–341.

[10] W.E. Ricker, Stock and recruitment, J. Fish. Res. Board Can. 11 (1954), pp. 559–623.
[11] S. Stevic, On the recursive sequence xnþ1 ¼ max{c; xpn =x

p
n21}, Appl. Math. Lett. 21 (2008),

pp. 791–796.
[12] S. Stevic, Global stability of a difference equation with maximum, Appl. Math. Comput. 210

(2009), pp. 525–529.
[13] F. Sun, On the asymptotic behavior of a difference equation with maximum, Discrete Dyn. Nat.

Soc. (2008), 243291.
[14] I. Szalkai, On the periodicity of the sequence xnþ1 ¼ max{A0=xn; . . . ;Ak=xn2k}, J. Difference

Equ. Appl. 5 (1999), pp. 25–29.

T. Sauer8


