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The problem of reconstructing and identifying intracellular protein signaling and biochemical networks

is of critical importance in biology. We propose a mathematical approach called augmented sparse

reconstruction for the identification of links among nodes of ordinary differential equation (ODE)

networks, given a small set of observed trajectories with various initial conditions. As a test case, the

method is applied to the epidermal growth factor receptor (EGFR) driven signaling cascade, a well-

studied and clinically important signaling network. Our method builds a system of representation from

a collection of trajectory integrals, selectively attenuating blocks of terms in the representation. The

system of representation is then augmented with random vectors, and l1 minimization is used to find

sparse representations for the dynamical interactions of each node. After showing the performance of

our method on a model of the EGFR protein network, we sketch briefly the potential future therapeutic

applications of this approach.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of reconstructing a network of interacting
variables from a small set of data generated by the network itself
has attracted considerable attention especially since this problem
arises so naturally in genomics, proteomics and more generally
system biology problems (see for example Voit, 2000; Chou et al.,
2006; Husmeier, 2003; Rogers and Girolami, 2005; Nachman
et al., 2004; Gardner et al., 2003). In particular, the ability to
reconstruct and identify intracellular protein signaling and
biochemical networks is of critical importance in modern biology.
However, the ability to dynamically measure and collect enough
data from every protein/node within the network is impossible
with current methodologies. We sought to develop a mathema-
tical approach to this problem using one of the most well-studied
and clinically important signaling networks, the epidermal
growth factor receptor (EGFR) driven signaling cascade (Araujo
et al., 2005a).

Interestingly, it is widely believed, and proven in some cases,
that biological networks are scale free networks, with a few
variables (hubs) densely connected to many others and most
variables interacting only with a few others (Albert, 2005). Even
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the hubs do not interact with more than a dozen other variables in
most reliable models, so that effectively we can say that these
networks are sparse, with respect to the total number of all
possible connections among variables. Such information can
greatly help in reconstructing the network itself, as shown in
Gardner et al. (2003), Yeung et al. (2002), and Tegner et al. (2003).

Many current algorithms to reconstruct networks from
expression data are based on the application of powerful Bayesian
methods after the seminal work in Friedman et al. (2000), but, as
noted in Rogers and Girolami (2005) (see also Zak et al., 2002),
these methods do not perform well with the limited amount of
data that can be generated by microarray technologies. This
limitation is especially pertinent for protein expression data. The
other widely used approach for network reconstruction is based
on parameter estimation of dynamical system models of the
networks themselves (Voit, 2000). The fundamental difficulty of
such approach is the very large number of parameters and
reaction rates that need to be estimated (Chou et al., 2006), and
this, again, leads to an inability to work efficiently with the
limited data generated by microarrays and time series of
expression profiles. Another viable alterative when analyzing
microarray data is to simply perform some type of clustering
analysis such as hierarchical or K-means clustering (Kaufman and
Rousseeuw, 2005), or the recent exemplars clustering technique
(Frey and Dueck, 2007). Clustering techniques do not require very
large data sets to be applied, but they only identify similarly
activated variables, and do not provide a causal understanding of
the network structure.

www.sciencedirect.com/science/journal/yjtbi
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To address the need for specialized network reconstruction
methods that can work for the limited data generated by
experiments, we restrict our attention in this work to ordinary
differential equation (ODE) models of protein signaling networks
of the form _x ¼ f ðxÞ, where x is the vector of variables in the
system and _x its componentwise derivative. The plausibility of a
dynamical system model for biological networks is a well
established approach in the literature (Voit, 2000; Chou et al.,
2006). However, exact modeling and parameter estimation for
such models is difficult in noisy environments and with small data
sets. In addition, biological systems adapt their network structure
over time, especially in the presence of diseases. It is likely more
effective to search for equivalent, indistinguishable, classes of
models (Judd and Smith, 2004) that project to the same network
structure, in the sense that they give rise to trajectories that are
qualitatively similar and they have similar overall topology of the
connections among nodes.

With this general approach in mind, we ask whether the
structure of sparse ODE networks can be inferred from a small set
of trajectories with different initial conditions generated by the
system. We show that, for a specific realistic case of ODE modeling
of protein networks, it is possible to expand and adapt ideas from
the theory of sparse regression (lasso) and signal reconstruction
by l1 minimization (Tibshirani, 1996; Chen et al., 1998; Hastie
et al., 2001, Chapter 3; Donoho, 2006a), to develop a method that
reconstructs a significant portion of these networks with good
accuracy even in the presence of moderate uniform noise of
intensity up to 20% of the maximum values of the trajectories.

Our method builds a system of representation by using a
collection of integrals of all given trajectories and by attenuating
block of terms in the representation itself. The system of
representation is then augmented with random vectors, and l1
minimization is used to find sparse representations for the
dynamical interactions of each node. Augmentation by random
vectors is crucial in the context of network reconstruction, since
sparsity alone is not able to handle the large error-in-variables in
the representation due to possible high noise in the trajectories.

One of the main strengths of our method is the ability to
sharply distinguish relevant links, so that the rate of false links
that are detected can be made very low. This is important in
practice since it is difficult and expensive to follow up and validate
experimentally potential links among proteins that are inferred by
computational means (Hu et al., 2006).

The paper (Yeung et al., 2002) is a significant antecedent to our
work, since in that paper the authors use a hybrid singular value
decomposition (SVD) and l1 minimization to find a sparse linear
model that fits oligonucleotide microarray data. The l1 minimiza-
tion is used in that paper as a postprocessing of the reverse-
engineering performed by the SVD. A similar preconditioning for
large models is implemented in the recent paper (Debashis et al.,
2008) and applied to several examples including microarray data.
In this paper we will show how l1 minimization methods can be
modified to directly approach network reconstruction and model
identification problems, without any preprocessing, for realistic,
very limited sampling of the data and significant noise levels, even
when large spaces of nonlinear models are considered. Moreover
the results for the EGFR network show that our method can
recover the topology of relatively small protein networks. We do
not require explicit estimation of the noise level in the trajectories
and we do not need multiple trajectories with same initial
conditions to estimate the true trajectories in the presence of
noise.

In Section 2 we show how to apply l1 minimization methods to
reconstruct sparse ODE networks, stressing the specific steps that
are necessary in the network setting. In Section 3 we apply the
algorithm presented in Section 2 to the EGFR model as described
in Araujo et al. (2005a). We choose this network, strongly related
to cell proliferation, because it plays a significant role in cancer
development (Lacouture, 2006), so it is considered an ideal target
for fine tuned potential therapies that do not impact the body at
the systemic level. We will briefly mention some possible
directions of research related to the medical applications of
network mapping at the end of the paper.
2. Methods

2.1. Sparse signal processing

Suppose we have a discrete function FðnÞ, n ¼ 1; . . . ;N and a
collection of functions G ¼ fg1ðnÞ; . . . ; gMðnÞ; n ¼ 1; . . . ;Ng with
MbN. Then in general the representation of F in terms of G will
not be unique, meaning that there will be many ways to write F as
FðnÞ ¼

PM
m¼1amgmðnÞ, n ¼ 1; . . . ;N: An important question when

trying to extract the significant features of F with respect to G is to
find, among the many possible representations for a signal, the
one that is the most sparse, i.e. the representation that has as
many zero coefficients am as possible. This problem is in general
very difficult, but we can use linear programming techniques to
find approximate sparse representations, that is, representations
that have just a few large coefficients and many very small ones.

We briefly introduce this type of approximation to sparse
solutions here following mostly Mallat (1998, Section 9.5.1), and
we refer to Tibshirani (1996), Chen et al. (1998), Hastie et al.
(2001), and Donoho (2006a, b) for a thorough analysis of the
relations between l1 optimization and sparsity. The key idea is to
realize that if we minimize the 1-norm of the coefficients
jaj ¼

PM
m¼1jamj, this implies that the total energy of the coeffi-

cients is concentrated in just a few of them. We can gain an
intuition on this by noting that a minimization of the 1-norm
reduces cancellations among different elements of G, since these
cancellations increase the 1-norm.

Note that the problem minð
PM

m¼1jamjÞ, subject to FðnÞ ¼PM
m¼1amgmðnÞ, n ¼ 1; . . . ;N, is equivalent to the problem

minð
P2M

p¼1xpÞ, subject to FðnÞ ¼
PM

p¼1xmgmðnÞ �
P2M

p¼Mþ1xmgmðnÞ,

with xp40 for every p ¼ 1; . . . ;2M and xp � xpþM ¼ ap. The linear

optimization problem defined by the last two equations can be
easily put in the standard format of linear programming problems,
so that a solution can be quickly obtained using one of several
algorithms as those described in Lustig et al. (1994) and Zhang
(1998).

Given therefore a discrete signal of length N and a collection of
M signals with MbN we can easily find approximate sparse
representations for F in the collection of signals. This result, first
exposed in Chen et al. (1998), was the inspiration of a series of
works that showed the great potential of l1 minimization in signal
processing, see for example the recent work in Candes and Tao
(2004) and Candes et al. (2006). Regression using l1 optimization
has also been used extensively and to great effect in statistical
learning for model identification under the name of lasso, after
the pioneering work in Tibshirani (1996), see Hastie et al. (2001,
Chapter 3) for a up to date review of use of the technique.

We will see in the next subsection the crucial adjustments that
are required to make l1 optimization effective and robust in
network reconstruction problems.

2.2. Augmented sparse networks

Let us now write explicitly the general form of the dynamical
systems of interest. We are assuming that an experiment provides
noisy observations for N variables x1ðtÞ; . . . ; xNðtÞ, each measured
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at B time points t1; . . . ; tB (not necessary identical). Finally we
assume we are given a series of R experiments. Thus, we have
N � B� R data points. The goal is to provide an algorithm for
reconstructing the network structure of an autonomous system of
ODEs for x1ðtÞ; . . . ; xNðtÞ.

We measure noise levels in each time series of observations as
follows: assume bounded noise, let m be the absolute value
of the maximum displacement of the observations from the true
trajectory, and let M be the maximum of the values of the
true trajectory, then the noise level is defined as m=M, i.e.
we consider the relative intensity of noise with respect to the true
trajectory.

Signaling networks arising from protein interactions, even
though nonlinear, are often modeled with differential equations
that contain simple analytical forms that contain power function
terms of variables x1; . . . ; xN of the type xa ¼ xa1

1 xa2

2 � � � x
an
n , and

hyperbolic terms of the type xi=ðH þ xiÞ, that take into considera-
tion the presence of slow enzymatic kinetics (see Voit, 2000;
Araujo et al., 2005a, and references therein). In this paper we
assume for simplicity that the right-hand side of the dynamical
system that we try to model has polynomial terms up to degree
d ¼ 2, and hyperbolic terms xi=ðH þ xiÞ, H40. Roughly speaking
this modeling makes the assumption that linear terms correspond
to uni-molecular interactions, quadratic terms correspond to
bimolecular interactions, and hyperbolic terms correspond to
Michaelis–Menton reactions.

Remark 2.1. We sample H at uniform intervals of length dH in a
range ½0; SdH� of interest with S some large positive integer.
Assuming some fine sampling dH, the proper choice of S would in
principle depend on the magnitude of the trajectories, since when
dHS is large compared to the maximum magnitude of the
observations, the corresponding Michaelis–Menton term effec-
tively will behave as a linear term, and therefore it will be
redundant with one of the linear terms of the model. This implies
that the right choice of S will depend on the dynamics of each
variable, whoever in this study we do not specialize the choice of S

to each variable, and we just assume that dHS is big compared to
the magnitude of all variables, so that, for soS small enough, we
have a properly hyperbolic term for each variable node.

If we denote by _xi the time derivative of xi, we consider models
of the form:

_xn ¼ a0 þ
XN

i¼1

lixi þ
XN

i¼1

XN

j¼1

qijxixj þ
XN

i¼1

XS

s¼1

his
xi

sdH þ xi
, (1)

where n ¼ 1; . . . ;N, and a0, li, qij, his are parameters to be
determined. We can in principle consider a model that contains
on the right-hand side all monomials xai

i , all binomials xai

i x
aj

j , all
the way to xa1

1 xa2

2 � � � x
an
n , where the exponents have norm jaij less

than a constant A and we assume a uniform sampling of the
exponents. This would be a general setting compatible with the
modeling approach taken in Voit (2000). However, the main
complication of such general models is already present in our
quadratic model with hyperbolic terms: when we have many
nodes in the network, the combinatorial explosion of terms makes
parameter fitting very difficult in the case only a limited amount
of noisy data is available on the dynamics of each node.

We also assume sparsity of the network, i.e. we define a

network as sparse if each node interacts with only a small number of

nodes compared with the total of possible nodes. Note that this
assumption implies that the number of terms in each equation in
(1) with non-zero coefficients is also small compared to the total
possible number of terms.

Given this assumption, a possible way to approach the fitting
problem implicit in Eq. (1) is to find the model that minimize the
l1 norm of the parameters of the terms in the equation. From the
background material summarized in the previous subsection, we
know that l1 optimization leads to a sparse representation of
signals with very few terms with non-zero parameters, and that
the optimization itself can be performed with linear programming
techniques (Chen et al., 1998).

Since we noted in the introduction that actual biological
networks seem to satisfy the sparsity assumption, the l1 fitting
method should, in principle, improve our ability to find the actual
links among nodes. Exact parameter fitting is difficult in this case
as well and we will see in the Results section that direct
application of the l1 fitting as used in signal processing leads to
very poor results.

As noted at the beginning of the section, we assume that we
sample variables x1; . . . ; xN at B points and that we have several
trajectories xn;r ; r ¼ 1; . . . ;R, with R different initial conditions. We
denote by _x1; . . . ; _xN the respective derivatives at each of the
sampled points. If we write Xn ¼ ½xn;1; . . . ; xn;R�, _Xn ¼ ½_xn;1; . . . ; _xn;R�,
and we denote by J the unit vector of same length as Xi, a formal
substitution in Eq. (1) of xn with Xn and _xn with _Xn leads in effect
to a problem of representation of discrete signals _Xn in terms of
the collection of signals X ¼ fJ;Xi;XjXk;Xi=ðsdH þ XiÞg with
i; j; k ¼ 1; . . . ;N, s ¼ 1; . . . ; S.

Remark 2.2. The total number of terms in X will be M ¼

N þ NðN þ 1Þ=2þ NS, since we have N linear terms, NðN þ 1Þ=2
distinct quadratic terms and NS hyperbolic terms. The length of
each vector in X will be instead equal toV ¼ N � B� R where we
recall that B is the number of data points in each time series and R

is the number of distinct experiments (i.e. the number of different
initial conditions).

This way of stating the problem of reconstructing a specific
network of the form (1) highlights the potential of applying the l1
sparsity techniques to recover the effective system from a
collection of different trajectories. However, a direct application
of l1 optimization to the network data will not work in the
presence of high noise and for very limited data. As much as
sparsity is a powerful device to explore signal representations, it is
not able by itself to deal with the large error-in-variables in the
representation generated by the system trajectories when they are
noisy. There are some crucial modifications that are necessary to
get useful reconstruction results on protein networks, we term
them model augmentation, attenuation of blocks of terms, and
integral modeling. They lead to the following alternative model of
the network structure at a specific node:

xnðtÞ � xnðt0Þ ¼ a0 þ
XN

i¼1

li

Z t

t0

xi dt þ bq

XN

i¼1

XN

j¼1

qij

Z t

t0

xixj dt

þ bh

XN

i¼1

XS

s¼1

his

Z t

t0

xi

sdH þ xi
dt þ

XG

g¼1

wgng , (2)

where bq and bh are positive attenuation coefficients for
quadratic and hyperbolic terms, both smaller than 1 and where
ng ; g ¼ 1; . . . ;G, are discrete random vectors normally distributed,
scaled to have norm 1 and multiplied by suitable coefficients wg

to be determined. We outline now why these adjustments are
necessary for a successful application of l1 sparsity methods.

Integral modeling: First of all we note that to go from Eqs. (1) to
(2) we actually formally integrated the differential equations. We
need to do this because in a realistic reconstruction setting we
have few sample points and a relative noise that can be as high as
0.2 (i.e. 20%) of the maximum norm of the measured trajectories,
making the estimation of the derivatives very difficult.

This problem transcends the specifics of our approach and is a
key issue in the study of experimentally generated time series.
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Note that to use l1 optimization, we clearly do not need to use only
local differential information. This integral representation avoids
the implicit problem of finding a good estimation of the derivative
from a limited number of samples of the trajectories. We can
easily estimate multiples of the integrals on the right-hand side of
Eq. (2) by summing up the samples that are given from t0 to t, if
sampling is uniform. If sampling is not uniform, which is very
often the case for experimental data, we can scale the contribu-
tion of each summand multiplying by the size of the correspond-
ing sampling interval.

The relative noise in the measurement of xnðtÞ � xnðt0Þ is
comparable with the relative noise of the time series xn itself
when t is far from t0. Moreover, for biological signals derived from
proteomics and genomics, variables often represent intensity or
concentration profiles that always assume positive values and
therefore, in these cases, we expect the integrals on the right-hand
side to be dominated by the integrals of the true values of the
variables, when zero mean noise is added to them. Note that the
constant term a0 was used simply as a term to correct potential
biases in (1), as it does not carry information on the nodes’ links,
so we use it similarly in (2) and we do not take its integral.

Model augmentation with random terms: The second very
important modification that is apparent in Eq. (2) is the addition
of discrete random vectors ng ; g ¼ 1; . . . ;G, normally distributed,
scaled to have norm 1.

Consider that the main issue that prevents an accurate
reconstruction of the network is the presence of noise in the
trajectories, what is often labeled as errors-in-variables (Voss et
al., 2004). Noisy data are a problem especially when trying to fit a
nonlinear model, since in this case large spurious terms are
generated by nonlinear terms of the model. The representation
system needs to account for such terms when fitting the models
on the noisy data.

A simple example that shows how errors in the trajectories
affect modeling is the following: denote the noisy measurements
of Xi and Xj as ~Xi ¼ Xi þ Ni and ~Xj ¼ Xj þ Nj, respectively, and
assume that the differential model (1) includes a term XiXj in the
representation of some _Xn (the argument can be easily translated
in the integral representation of Eq. (2)). Because we need to
represent _Xn with terms generated by the noisy trajectories, we
want the term ~Xi

~Xj, to appear in the sparse representation with
large non-zero coefficient. However, ~Xi

~Xj ¼ XiXj þ XiNj þ XjNiþ

NiNj, that is, there are several spurious terms in ~Xi
~Xj, besides the

effective term XiXj, that are not dynamically related to _Xn.
By augmenting the representation with a large number of

random terms, we increase the chance that the noisy residue
XiNj þ XjNi þ NiNj is spread uniformly among many random terms
that do not carry information on the potential links among nodes,
so that the l1 optimization will show only one large coefficient
associated to ~Xi

~Xj, and many very small coefficients wg associated
to the random terms that do not carry information about the
network. We want the number G of random terms to be much
larger than the number V of data points available for each variable
so that the energy of potential noisy residues like XiNj þ XjNi þ

NiNj is likely to be uniformly distributed among the parameters
wg of all the random vectors ng , and therefore the overall
contribution to the l1 norm of these noisy residues is small.

Remark 2.3. Note that G is dependent on the particular instance
of problem that is given, and more specifically on the type and
number of trajectories and sample points in each trajectory, but
the performance of the method we describe in this section is not
strongly dependent on its specific value, as long as GbV , where V

is the total number of data points available for each variable. As a
strong numerical evidence of this fact, we will see in the next
section, when analyzing a model of the EGFR network, that adding
random terms tremendously increases the quality of the recon-
struction of the network, see in particular Remark 3.3 and
Fig. 5(b).

The augmentation of the basic model has far reaching
consequences, since it assures that the new models are large
enough to be able to perform an approximate sparse minimiza-
tion, strongly retaining the dependence from the original terms of
the ‘effective’, non-random model, while diffusing any potential
noise in the data among the random terms of Eq. (2). The non-
random portion of the matrix derived from the ODE network
itself can be very ill conditioned. In particular, the hyperbolic
terms generated by the same variable will be highly correlated
among each other. There is an intrinsic inability to fully
control the representation matrix generated by the trajectories
and the error in variables that are bound to appear when
trajectories are very noisy. This is a distinct characteristic of
ODE reconstruction networks and one that makes this work
diverge in methodology and outlook from standard l1 signal
reconstruction.

Attenuation of block of terms: Eq. (2) displays coefficients bq and
bh, respectively, for all quadratic and all hyperbolic terms in the
system. The reason for these extra coefficients is that we seek to
have reconstructed models with low complexity, that is, models
that, given two comparably good representations, will select the
one with more terms of low degree. Given this requirement on
the models, it is useful to enforce a way to explicitly diminish the
influence of the terms belonging to more complex blocks of terms
such as quadratic and hyperbolic ones, since the large number of
quadratic and hyperbolic terms increases the chance, in a noisy
setting, that several wrong terms from these blocks are selected in
the representation of each node. Essentially, attenuation coeffi-
cients are one more device to keep the errors-in-variables from
generating false links in the computed representation of each
node, assuming that higher degree and higher complexity terms
appear with frequency comparable to linear terms in the
representations.

The partial suppression of these higher complexity terms can
be done by using suitable attenuation coefficients. More specifi-
cally, we choose to attenuate uniformly all terms in a block by a
factor 0obo1. Assuming that all terms were scaled to have l2
norm equal to 1, we effectively multiply the inner product of any
signal with each term in the attenuated block by 1=b, which is
bigger than 1, so the l1 optimization will have the tendency to
select fewer of the terms in this attenuated block for the
representation with the minimal l1 norm. This is another
interesting point specific to the modeling of networks. The need
of some attenuation is especially strong when we want very few
selected false links and the trajectories are very noisy.

Note that quadratic terms will still be well represented in the l1
representation, as it should be, since we know that biologically
motivated systems will likely have quadratic terms when two
molecules are interacting. We think of attenuation as a way to
impose that the number of linear, quadratic and hyperbolic terms
in the reconstruction are kept roughly equal, regardless of the
potentially very different number of terms in each block.

Empirically, we find that the attenuation of quadratic and
hyperbolic terms is important for obtaining the very best results
in the reconstruction of the geometric structure of the network,
for example an attenuation bq ¼ bh ¼ 0:5 for both quadratic
and hyperbolic terms was near optimal for the EGFR network
(see Fig. 6). The need of some attenuation is especially strong
when we want very few selected false links and the trajectories
are very noisy. The accuracy of each representation for different
values of bq and bh can be compared with the other representa-
tions and therefore there is a way to make an online selection of
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these coefficients. We find that a wide range of small values of bq

and bh give similar reconstruction results. See Remark 3.4 for a
more detailed analysis of the use of attenuation coefficients in our
case study.

2.3. Network reconstruction algorithm

The observations in the previous subsection can be gathered
into a simple reconstruction algorithm based on l1 optimization,
which we call augmented sparse reconstruction. We label the
variables involved in a slightly different way in the algorithm to
highlight the flexibility in the choice of the input for the
algorithm. Given trajectories from a sparse system that is believed
to be of a certain generic form, for each trajectory Xn;r, r ¼ 1; . . . ;R
discretely sampled at B points, let X̄n;r be the vector Xn;rðtÞ �

Xn;rðt1Þ where t takes all B sampled values, X̄n;r corresponds to
evaluating the vector of differences on the left-hand side of Eq. (2)
for each variable. Moreover, for a given vector gðtÞ, t ¼ t1; . . . ; tB, let
IðgÞ be the vector whose l-th component is the sum

Pl
i¼1gðtiÞ, and

let J denote the unit vector. The basic process to identify the nodes
is the following:
A.
 Suppose we are given N node variables and that for each
variable it is possible to generate R trajectories Xn;r , r ¼ 1; . . . ;R,
with different initial conditions, uniformly sampled at B points.
Write Yn ¼ ½X̄n;1; . . . ;X̄n;R�, Li ¼ ½IðXi;1Þ; . . . ; IðXi;RÞ�, i ¼ 1; . . . ;N,
Qij ¼ ½IðXi;1Xj;1Þ; . . . ; IðXi;RXj;RÞ�, i; j ¼ 1; . . . ;N and Hjs ¼ ½IðXj;1=

ðsdH þ Xj;1ÞÞ; . . . ; IðXj;R=ðsdH þ Xj;RÞÞ�, j ¼ 1; . . . ;N, s ¼ 1;2; . . . ; S
and where dH is the sampling interval for the hyperbolic
terms. For each n ¼ 1; . . . ;N:
B.
 Choose an attenuation coefficient bq for the quadratic terms
and another one, bh, for the hyperbolic terms. Let ng , g ¼

1; . . . ;G, be discrete random vectors normally distributed
scaled to have norm 1. Denote by j j the 2-norm of a vector
and let L̄ be the matrix whose columns are all the vectors
of linear terms Li=jLij, Q̄ be the matrix whose columns are
all vectors of quadratic terms Qij=jQijj and H̄ be the matrix
whose columns are all allowed hyperbolic terms His=jHisj.
Let NG be the matrix whose columns are the random vectors
ng scaled to have norm 1. Choose G large enough to have
the matrix Z ¼ ½J; L̄;bqQ̄ ;bhH̄;NG� with small condition number
(say less that 102).
C.
 Let a be the vector of parameters to be fitted in Eq. (2). Find the
minimal l1 solution to the (generally underdetermined) system
Yn ¼ Za, using for example LIPSOL (Linear Interior Point Solver)
as described in Zhang (1998).
D.
 Choose a threshold Tn and let aTn
be the vector whose

components are equal to those of a if the corresponding
components of a are bigger than Tn and zero otherwise. Let In,
the estimated set of directed links of node n, be the union of all
node indexes that appear in terms of Z corresponding to non-
zero components of aTn

.

Basically in step A we use the sampled trajectories to estimate
the integrals in the representation on the right-hand side of Eq. (2)
from available data, and we string them into long vectors, for
example the collection of all estimated integrals of the quadratic
term x1x2 will be represented by Q12, similarly integrals of linear
terms will correspond to some Li and so on.

In step B we scale the vectors of the representation to have
norm one, we attenuate the portion of the representation matrix
derived from quadratic and hyperbolic terms using attenuation
coefficients bq and bh, and we augment the matrix of the model
with scaled random terms to get an augmented matrix of
representation Z.
In step C we apply l1 minimization in the way outlined in
Section 2.1 to the system Yn ¼ Za. Modulo scaling by the norm of
the corresponding linear, quadratic and hyperbolic terms in the
representation matrix Z, we can think of the components of the
vector a as a0, the parameter of the constant term, all the
parameters l of the linear terms in (2), all the parameters q of
quadratic terms, all the parameters h of hyperbolic terms and all
the parameters w of random terms in Eq. (2). The specific l1
algorithm that we use is LIPSOL, described in Zhang (1998).

In step D we identify the largest parameters in the representa-
tion, since the assumption is that these parameters correspond to
the terms in Eq. (2) that significantly affect the dynamic of each
node. Finally, by collecting all the indexes of terms with large
parameters, we estimate the set of links that determine the
dynamics of each node.

Remark 2.4. While it is true that the hyperbolic terms add a lot of
parameters to the model and therefore they contribute signifi-
cantly to the complexity of the problem, the basic difficulty of
fitting the model with scarce very noisy data is significant also
when we select just a few hyperbolic terms, in this case the l1
optimization will be in general unfeasible, but the linear
programming algorithm we use (LIPSOL) can find a solution by
minimizing the constraints that are violated to the largest extent.
Even in this case, the l1 method avoids spreading the norm of the
representation on the whole set of parameters, as it would do, for
example, a quadratic regression. This is partially related to the fact
that l1 optimization for overdetermined systems of equations can
be seen in many problems as a powerful error correcting method
(Candès et al., 2005). In Fig. 6 we show how our method would
perform for a variety of models, including the case when
hyperbolic terms are fully suppressed.

Remark 2.5. The choice of the threshold in step D is very delicate
and it is explored in depth computationally in the next section for
the EGFR signaling network that we study. Our approach is to
select a family of thresholds that is consistent with the fact that
the size of the threshold must be relative to the size of the
parameters used to represent each node. We define therefore a
threshold, for each node, as a constant multiple of the standard
deviation of the non-zero parameters of the non-random terms of
each node, what we may call the deterministic parameters of the
representation (in practice we neglect any parameter with norm
smaller than 10�10). Formally we define Ti ¼ Ksi, for each node
i ¼ 1; . . . ;N, where K is some fixed constant determined for the
whole system, while si is the standard deviation of the absolute
value of the deterministic non-zero parameters of the representa-
tion of node i. This flexible definition of the threshold ensures
that: (a) the threshold level is relative to the norm of the
parameters of each node; (b) the threshold is larger if there are
many sizeable non-zero parameters in the representation of a
specific node. The main advantage of a uniform definition of
threshold across all variables is that we need the proper
estimation of a single threshold multiplier K, and we have the
whole reconstruction data available to do that. If the network has
very distinct behavior for different subsets of nodes, it may not be
possible to use a single multiplier and we must resort to
thresholds estimated for each node separately. The specific value
of K must be in practice inferred form the data, and we device an
heuristic for this purpose that is introduced at the end of Section
3.3 and fully described in Appendix A.

Remark 2.6. The emphasis in this paper is in reconstructing the
network structure of the system of ODEs, but our algorithm can be
used also to get a rough estimate of the norm of the parameter
values of the leading terms in the differential equation (1).
Suppose for example that, for a scaled quadratic term Qij=jQijj in
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the matrix of representation Z, the algorithm finds a parameter q̄ij

by using an attenuation coefficient bq. Then this quadratic term
gives a contribution to the overall representation of Yn, the vector
of all integrals of trajectories of _xn, determined by q̄ijbqQij=jQijj.
This term is almost identical to the term we seek in Eq. (2),
evaluated at each time sample of each trajectory of the node,
except for the scaling by the norm of Qij. If we remember that by
formally taking the derivative of Eq. (2) with respect to time we
get Eq. (1), we see that we can recover the true parameter qij in the
term qijxixj of the right-hand side of Eq. (1) by rescaling q̄ij as
qij ¼ q̄ijbq=jQijj. An identical scaling procedure can be done for all
leading linear and hyperbolic terms. However, in this way we get
only an estimation by defect, since a significant portion of the
norm of the parameter will be lost due to interference of the
random terms in the representation.

We stress again that by no means we need to limit ourselves to
linear, quadratic and hyperbolic terms. General power function
expansions or higher degree polynomial terms are possible within
the frame of this method, since random terms and l1 minimization
keep the reconstruction stable even for very underdetermined
systems of representation. Note finally that the algorithm does not
change in structure as we change the model, for example we could
consider just linear and quadratic terms and the only difference
would be to reduce the size of the representation matrix in step B.
3. Results

In this section we show the performance of the augmented
sparse reconstruction method A–D on the EGFR protein network
described in Araujo et al. (2005a) and explicitly shown in
Appendix B, where each variable is labeled with the correspond-
ing protein node. In Section 3.1 we give the details of the set up of
the simulations we perform, in Section 3.2 we show the result of
applying the algorithm at a single node. In Section 3.3 we work
under the assumption that we can choose the multipliers for the
thresholds introduced in Remark 2.5 so that the false positives
rate is kept very low. In this way we are able to estimate the ideal
performance of the algorithm and offer a proof of concept for the
method. Finally we show that an heuristic argument allows to
determine, from the set of all node representations provided by
steps A–C, suitable thresholds that give true positive rates close to
the ideal setting, the details of this heuristic are provided in
Appendix A.
3.1. A model of the EGFR network: simulations and set up of the

augmented sparse reconstruction

The EGFR network is one of the most well-studied and
clinically important signaling networks in biology today and the
ability of our method to reconstruct a model of such fundamental
network is very promising. A portion of the EGFR network has
been modeled in Araujo et al. (2005a) as a system involving only
linear, quadratic and hyperbolic terms, so the general model in
Eq. (1) (and therefore in Eq. (2)) is ideally suited for its analysis,
however, the right-hand side of Eqs. (1) and (2) has a very large
number of quadratic and hyperbolic terms for the EGFR network,
both due to the large number of variables involved, and to the
need of considering a sufficiently large range of hyperbolic terms.
Therefore already in this case we are faced with the difficulty of
finding from observed data the few relevant terms for the actual
EGFR network. Despite this difficulty, augmented sparse recon-
struction is able to find a very significant fraction of the links in
the network. And we provide evidence that the method is robust
with respect to changes in the size and type of system of
representation.

The sparsity of links for the EGFR system has some variation
between nodes; we have 11 variables with less than 4 distinct
terms (linear, quadratic or hyperbolic) in the expression for their
derivative, 9 variables with less than 8 terms and 1 variable, x4,
corresponding to protein node [RP], with 19 terms. This last
variable is not sparse according to our definition of sparsity in
Section 2.2, as it is connected to most other nodes, and it
corresponds to the main ‘hub’ of the portion of the EGFR network
that we analyze.

We assume that R ¼ 100 time series with different initial
conditions are available for each variable in the system, each
sampled, for simulation purposes, at B ¼ 25 equally spaced points
in the time interval ½0;27�. However, in practice to be able to
access 25 points for each time series may already be impractical,
especially for proteomics applications. This sampling limitation
contrast with the fact that, if the chosen sampling interval is too
great, a signal peak and decline could be missed completely and
this would mean that we would be unable to detect the main
characteristics of the interactions. We compromised between
these two opposing needs by making the assumption that we have
access to the values of the signals on 5 equally spaced points and
also to the averages of signals and their functions on 5 consecutive
5-point windows of the 25-point time series. This condition is
stronger than having directly access only to 5 samples for each
time series, but is sufficiently close to what can be obtained in an
experimental setting. Because of this restriction on the number of
samples, only V ¼ 5� R ¼ 500 uniformly selected points are
actually used in the algorithm. We may be able to do without
knowledge of averages on intervals by generating several possible
representations from the data with a bootstrap-like technique
similar to the one used in Napoletani and Sauer (2008).

To simulate the kind of noise observed in real protein
networks, we add noise to the computed trajectories by taking
the maximum M of each given time series and by adding uniform
white noise in the interval ½�m;m� where m is equal to a given
percentage of M. In particular, when m ¼ 0:15M, i.e. when noise
level is 0.15 of the maximum intensity, this procedure seems to
give levels of noise consistent with experimental conditions. The
characteristic shape of the noisy time series from the EGFR
network is shown in Fig. 1 (noise level 0.15).

The initial conditions for each variable are chosen as uniformly
distributed random numbers in the interval ½0;40�. In real systems
the biologically significant ranges of initial conditions vary among
different variables. This raises an interesting theoretical and
practical question: Which is the minimal domain of initial
conditions that allows the reconstruction of the network? This
question is particulary relevant for networks that display simple
dynamics, since each short trajectory may not carry the full
information on the underlying network.

Now the generic shape of the activity levels of the network
nodes is typical of a biological signaling system in steady state
that is suddenly stimulated by a ligand, reaches a maximum
activity and then decays to some baseline activity. The key point is
to understand how the increase/decrease of activity of each node
influence all others nodes, and the intensity and position of the
peaks of the activity curve plays in this respect an important role.
To gain a qualitative understanding of the shape of the activity
levels of the nodes, and also to put the number of samples in
perspective, we selected two time series from our simulation, one
corresponding to protein node [R-Sh], in Fig. 1(a), and one
corresponding to protein node [R-PLP] in Fig. 1(b). We selected
these two trajectories because they highlight in a particularly
striking way the fact that the speed of decay of the activity of each
node can vary enormously, to the point of almost being
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Fig. 1. In subplots (a) and (b) we show typical trajectories that are observed in the EGFR network, sampled uniformly 25 times in the time interval ½0;27�. Starred curves are

the actual trajectories, circled curves are the trajectories with 0.15 relative noise added. Plot (a) shows a trajectory of x9, i.e. [R-Sh], that settles within few samples points to

a base value, plot (b) a trajectory of x6, i.e. [R-PLP], with a much slower decay.

Fig. 2. This figure shows the norm of the parameters for the representation of Y2,

the vector of all integrals of _x2 as defined in Eq. (2). From top left we have the

parameters corresponding to: (a) the linear terms of Eq. (2); (b) the quadratic

terms; (c) the hyperbolic terms; and (d) the random terms. Note that almost all

deterministic parameters are identically zero.
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undetectable in an infrequent sampling setting. For the time
series in Fig. 1(a) corresponding to protein node [R-Sh], we have
fast initial decay, and, with our sampling rate, we detect only
2–3 points in the high varying region of the series, while for the
time series in Fig. 1(b), corresponding to [R-PLP], we have slow
decay and we can detect, with the same sampling rate, a larger
proportion of points where the time series has not yet relaxed to
its steady state. As we already stressed, this infrequent sampling is
one of the reasons we had to move from the differential
representation of the network to the integral one used in A–D,
as it may be problematic to estimate derivatives in such
infrequent sampling scenario.

We seek to reconstruct the EGFR network using models as in
Eq. (2) (and implicitly Eq. (1)), i.e. we consider linear, quadratic
and hyperbolic terms. The sampling interval of the hyperbolic
terms is selected as dH ¼ 10 and the total number of hyperbolic
terms for each variable as S ¼ 50. The total number of terms for
the model, and therefore the total number of parameters, is
M ¼ N þ NðN þ 1Þ=2þ NS ¼ 1449, far more than the V ¼ 500 data
points we use to find the links for each node. For most of the
simulations, the number of random vectors to augment the model
is chosen as G ¼ 2500, the attenuation for the quadratic and the
hyperbolic terms is chosen to be bq ¼ bh ¼ 0:5. In see Remarks 3.3
and 3.4 we explore instead the performance of the algorithm for
several values of G and of attenuation coefficients.

Note that even a simpler model with only linear and quadratic
terms would have M ¼ N þ NðN þ 1Þ=2 ¼ 299 terms and therefore
as many parameters to fit: a standard quadratic regression with
V ¼ 500 points would distribute the energy of the signals
uniformly among all terms of the model. However, even without
considering the added complexity of having hyperbolic terms,
much bigger sets of data points V would be necessary to make
quadratic regression competitive with our augmented sparse
reconstruction algorithm. For a comparison of quadratic regres-
sion and augmented sparse reconstruction in the case of
reconstructions using locally linear models see Napoletani and
Sauer (2008).
3.2. Application of the algorithm at one single node

Now let us gain an understanding of the algorithm described in
Section 2.3 by looking at a specific reconstruction for a node of the
EGFR network.

In Fig. 2 we show a typical example of the sparse representa-
tion that can be obtained by applying A–D to the infrequently
sampled, noisy trajectories of the EGFR network with the noise
level as in Fig. 1. More specifically, we show the reconstructed
representation for Y2, the vector of all integrals of _x2 on the left-
hand side of Eq. (2), with respect to the vector of all integrals
of linear, quadratic, and hyperbolic terms of the right-hand side of
Eq. (2). We use step A to build all the numerical approximations of
the integrals of all terms. With step B we scale all these integrals
so that their norm is 1, this assures that the !1 optimization
procedure is not affected by the possibly very different activity
levels of different nodes. At this stage we also pre-multiply
quadratic and hyperbolic terms by the attenuation coefficients
bq ¼ bh ¼ 0:5. With step C we use l1 minimization to find a set of
parameters that allow for an exact reconstruction of Y2. Note that
most of the parameters will be identically zero, a characteristic of
solution found with l1 minimization, as indicated in Section 2.1.
Finally, we skip step D in this preliminary analysis at a single
node, since our purpose in this subsection is only to get a visual
qualitative sense of the sparsity and validity of the identified links.
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We choose variable x2, corresponding to ½Ra�, because it has
very few terms in its actual differential equation, namely

_x2 ¼ �0:06x2 þ 0:2x3 þ 0:003x1x23 � 0:02x2
2,

where x3 corresponds to ½R2�; x1 to [R] and x23 to [EGF]. [Ra] is
involved in the early action of [EGF] in the network, as [EGF] binds
to monomeric EGFR (labeled [R] in the network) and forms the
receptor ligand complex [Ra], this in turn dimerizes as [R2]. Even
though we chose to focus our attention on [Ra] simply for its very
clear linkage structure, we note that the ability to monitor the
links that affect the dynamics of [Ra] could be useful to detect an
early disruption of the whole EGFR network. Since [EGF] is the
main input of the network and is used to stimulate the network, it
is important to be able to detect its direct action on nodes such as
[Ra]. We can also appreciate, from a modeling viewpoint, the
special role of [EGF] by noting that it is the only variable in the
network in Appendix B that does not depend in its dynamics from
the other variables. Indeed a [EGF] ligand binding to a receptor
can stimulate a variety of biologic functions and cellular responses
including growth, differentiation, migration and survival. The
same [EGF] receptor can connect to a plurality of downstream
pathways which may have opposing or synergistic actions.
Methodologies now exist for measuring the phosphorylated or
activated state of 200 signal pathway protein nodes within a
cellular network, see for example Petricoin et al. (2007), Sheehan
et al. (2008), and Wulfkuhle et al. (2008). It would therefore be
highly feasible to stimulate a cell with a ligand such as [EGF] and
then measure the time course of fluctuation of network node
activation states. As we said in Section 3.1, if the sampling interval
is of sufficient frequency, such that the transient linkages are not
lost between sample times, then the methodology described
herein could discover new linkages and build linkage maps that
are functionally relevant.

We plot the norm of the parameters of the model recon-
structed with the augmented sparse reconstruction in Fig. 2, more
particularly: the parameters of the linear terms of Eq. (2) are
plotted in Fig. 2(a), from l1 to l23; the parameters of quadratic
terms in Fig. 2(b), ordered from q1;1,y, q1;23, q2;2; . . . ; q22;23; the
parameters of the hyperbolic terms in Fig. 2(c), in the order
h1;1; . . . ;h1;10; . . . ;h23;1; . . . ;h23;10; the parameters of the random
terms are plotted in Fig. 2(d). The three largest parameters across
all terms correspond exactly to three of the terms in the actual
differential equation of _x2, namely x2, x3, corresponding to the uni-
molecular interactions with, respectively, ½Ra� itself and ½R2� and
x1x23, corresponding to the bimolecular interaction with [R] and
[EGF]. We are missing instead the x2

2 term that corresponds to a
nonlinear self-interaction of ½Ra�. The forth largest parameter in
the reconstructed representation corresponds to the x23 term, so it
repeats to some extent the information on the network linkage
given by the x1x23 term.

The strength of the algorithm is that almost all others linear
quadratic and hyperbolic parameters are identically zero.The
exceptions are the x2x20 term, barely visible at the right of the
leading quadratic term, that has a parameter that is at least 7
times smaller than any of the leading terms, and the x1x5 term
that has a parameter at least 45 times smaller than any of the
leading terms.

If we apply the reconstruction algorithm to this node with 20
different realizations of 0.15 relative noise, the x2 term appears as
dominant 18 times, the x3 term 15 times, the x1x23 term 20 times
and the x2

2 term 3 times. Note that the dominance of a term is not
only due to the size of its actual parameter in the differential
equation, but also to the intensity of the corresponding signal, for
example x1x23 has parameter 0.003 in the differential equation for
_x2 and yet it is recovered more often than x2

2 that has larger
parameter 0.02. We believe this has to do with the specific norm
scaling of the terms of the representation. Different choices of
norm scaling may be useful to improve further the performance of
the method, refer as well to Remark 2.6.

The example of the reconstruction of the representation of _x2 is
typical: some terms not only may be missing, but they can be
partially wrong, for example a term xi may appear in the
representation as x2

i , or a term xixj may be replaced by a term
xixk that gives similar shapes for the given initial conditions. Note
that these two possibilities do carry some significant information
on the geometry of the network, even though the specific terms
are incorrect.

At this point it is instructive to check the ability in identifying
links of a simpler technique such as correlation, which is very
frequently used in finding potential links among nodes in a
network when few trajectories are available. The setting in which
we compute correlation coefficients is exactly the same as in our
algorithm, i.e. we compute the correlation coefficients of the vector
Y2 and each of the vectors in the system of representation
generated by linear, quadratic and hyperbolic terms. More
specifically, in Fig. 3(a) we show the correlation coefficients of Y2

and the vectors of all integrals of each of the linear terms of Eq. (2);
correlation coefficients of Y2 and the vectors of all integrals of each
of the quadratic terms are plotted in Fig. 3(b); and correlation
coefficients with the integrals of hyperbolic terms are in Fig. 3(c).
The most negatively correlated linear term corresponds to x2, the
most negatively correlated quadratic term to x2

2, and the cluster of
most negatively correlated hyperbolic terms that can be seen in
Fig. 3(c) correspond to x2 as well. Note, however, that many terms
show similar large negative correlation coefficients. There are
especially a large number of negatively correlated quadratic terms,
so that it is difficult to set a threshold on the norm of the
correlation coefficients that would, for example, single out only

x1x23 as a relevant term in the differential equation of x2.
Unlike usual correlation coefficients, the considerable sparsity

of the coefficients of the reconstructions computed by our method
(in Fig. 2) allows for an accurate distinction of false links and true
links.
3.3. Global estimation of network structure

To evaluate globally the quality of the reconstruction results
for different levels of noise we use the ratio of computed true links
with respect to the total number of true links (true positives rate)
and the ratio of computed false links with respect to the total
number of false links (false positives rate). An important question
when assessing the quality of reconstruction is the proper
estimation of the thresholds Tn used in D. In general we expect
these thresholds to vary according to the noise level in the time
series. The sampling rate will also affect our degree of confidence
in the computed links so we must find an automatic way to
estimate the threshold from the data. Recall from Remark 2.5 that
we defined, for each node i, the threshold Ti ¼ Ksi, i ¼ 1; . . . ;N,
where K, the threshold multiplier, is some constant determined
for all the nodes, while si is the standard deviation of the absolute
value of the deterministic non-zero coefficients of the representa-
tion of node i.

To explore the performance of the algorithm of Section 2.3
with this class of threshold multipliers, suppose that for each
noise level in the time series, we select K so that the false positives
rate stays below 0.1. We perform such analysis for each possible
relative noise in the trajectories from 0 to 0.25 in intervals of 0.05.
In Fig. 4(a) we can see the result of such choice of thresholds: the
true positives rate (starred curve) is high (around 0.65) even for
realistic trajectories’ noise of the order of 0.20. Fig. 4(a) shows the
true positives rates (circled curve) when the false positives rate is
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Fig. 4. In plot (a) we have the average true positives rates for relative noise in the

trajectories from 0 to 0.25 when the value of the threshold multiplier K is set to

keep the false positive rate at: 0.1 (starred curve) and 0.05 (circled curve). In plot

(b) we have the average true positive rates (starred curve) and average false

positive rates (squared curve) for relative noise in the trajectories from 0 to 0.25

where the value of the threshold multiplier K is found for each noise level by using

the heuristic E of Appendix A.

Fig. 3. From top left, we plot the correlation coefficients of Y2, the vector of integrals of _x2 as defined in the left-hand side of Eq. (2), and: (a) the vectors of integrals of linear

terms of the right-hand side of Eq. (2); (b) the vectors of integrals of quadratic terms; (c) the vectors of integrals of hyperbolic terms.
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kept at 0.05, in this case we observe lower true positive rates, but
still sizeable: when relative noise is 0.20 we have true positive
rates around 0.60.

Note that even a 0.60 true positive rate, if false positives rate
can be kept to 0.1, has potentially very significant clinical
applications. It is well established in biologic systems (Santos
et al., 2007) that the wiring interconnections of cellular signaling
networks can profoundly influence the cell phenotype. Depending
on the linkage pattern, a cell can respond in a positive or negative
manner to a stimulatory ligand, or can switch responses from one
stimulatory ligand to another, therefore a cancer drug can either
kill the cancer cell or stimulate its growth (Araujo et al., 2007).
Consider that the environment of the cell, the treatment regimen,
or its neoplastic state can change completely the linkages
emanating from one class of receptor and one ligand. Therefore
the ability of our method of detecting the leading links for each
protein node could quickly determine, for example, whether a
new pathway is active in a cancerous cell. Moreover activated and
biologically important signal pathway nodes may be elevated 10
to a hundred fold more than quiescent nodes, improving therefore
the actual experimental ability to detect nodes with our method.
The knowledge of the new diseased pathways can then potentially
be used to target specific receptors to suppress those pathways.

Remark 3.1. We generated Fig. 4 by repeating the analysis with
20 different realizations for each level of relative noise. In the case
of false positive rates equal to 0.1, for all 20 realizations the
computed true positive rates differed from the average by at most
0.054 units, with standard deviation, at each noise level, of at
most 0.026. When we kept false positive rates at 0.05, for all 20
realizations the computed true positive rates differed from the
average by at most 0.071 units, with standard deviation, at each
noise level, of at most 0.03.

Note that even for noiseless trajectories, we still do not find all
true links, this is due in part to the infrequent sampling of the
trajectories that hides subtle interactions among the nodes. Note
that the rates we display are obtained excluding from the average
the reconstruction of variable 4, i.e. [RP], that does not have very
sparse representation and which is a ‘hub’, so likely to be better
known experimentally. We decided to exclude that specific
protein in our estimates of the errors because only very few
proteins are believed to perform the role of hub of a network in
signaling pathways, therefore we believe that the error rates
computed above are a better indicator of the errors we would find
in computing the representation of a generic protein in a large
network. Moreover the representation of x4 is so different from
the others that the use of the same threshold multiplier for it as
for all other variables does not seem appropriate. Including
variable 4 in computing the errors, without any modification in
the choice of threshold multiplier, would lead true positive rates
to slightly worsen.

Remark 3.2. It is possible in principle to have cases when much
more accurate averages of the trajectories are experimentally
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available. To simulate this scenario, suppose we sample the
trajectories of the EGFR network uniformly 100 times in the time
interval ½0;27� and that we use these samples to make better
estimates of the averages of all variables at 5 locations, so that
we still use only V ¼ 500 points in the algorithm, for direct
comparison with the previous case. The error rates improve
significantly in this case, if we keep false positive rate to 0.1, then
average true positive rates are about 0.88 in the absence of noise,
this is a improvement of almost 0.08 with respect to the same
time series sampled uniformly only 25 times. In Fig. 5(a) we show
average true positive rates for noise level from 0 to 0.25 in this
accurate averages scenario. We use 20 realizations for each noise
level in computing the averages of the true positive rates.

Remark 3.3. Fig. 5(b) shows that a large number of random terms
is important for the proper functioning of algorithm A–D. Namely
we show that the average true positive rates improve when we
increase the number G of random terms from 0 to 3000 in
intervals of 250. The averages of all variables used to generate this
plot are computed at 5 equally spaced points from network
trajectories sampled 25 times in the interval ½0;27�. False positive
rates are kept at 0.1 and relative noise level is fixed at 0.15. The
true positives rate is very low, just 0.13, when there are no random
terms added. Addition of 1000 or more terms gives high true
positive rates, about 0.68, that are comparable for several values
of the number of terms G. These results show also the robustness
of the algorithm with respect to the choice of G.

Remark 3.4. Our numerical results on the EGFR network suggest
also that attenuation of both quadratic and hyperbolic terms
improves true positive rates by roughly 0.10 with respect to a
model in which no attenuation is performed, from about 0.60 to
about 0.70, when false positive rates are kept at 0.1 and relative
noise level is fixed at 0.15. The same improvement is observed
with respect to a full suppression, where the attenuation
coefficients are set to zero for both quadratic and hyperbolic
terms. This scenario corresponds to a model in which only linear
terms are used. While it is already surprising that the algorithm
allows for a true positives rate close to 0.6 with only linear terms,
it is clear that to have a larger model and suppress higher
complexity terms strongly improves the reconstruction. The
numerical results in Fig. 6 seems to show that a wide range of
attenuations are suitable, as long as quadratic terms are not fully
suppressed.

In practice we need to find a suitable value for the threshold
multiplier K from the reconstruction data generated by the
algorithm at the end of step C. We give an heuristic description
Fig. 5. In plot (a) we have the true positives rates (starred curve) in the accurate

averages scenario of Remark 3.2, for relative noise in the trajectories from 0 to 0.25

when the value of the threshold multiplier K is set to keep the false positive rate

(squared curve) at 0.1. In plot (b) we have the true positive rates (starred curve) as

a function of the number of random terms added to the model. Noise level is 0.15.

The value of the threshold multiplier K is set to keep the false positive rate at 0.1.
of the method we developed to address this problem and we refer
to Appendix A for a more detailed implementation.

Suppose that we look at the total number of links selected by
the algorithm for a given threshold, then if the threshold is small,
we expect many links to be false positives, while if the threshold is
large, we expect many links to be true positives. The true links are
sparse, therefore when we increase the threshold we slowly
reduce the number of true positive detected by the algorithm. The
slow reduction of true positives implies an interesting assumption
on the biology of the network, because one consequence is that
there should be no large clusters of computed parameters, and
this is possible if the true kinetic parameters of the network,
scaled by the norm of the integrals of the trajectories, are roughly
uniformly distributed. This is a reasonable assumption, even
though it is difficult to have reliable information on the statistical
properties of the true kinetic parameters: the absolute activation
levels of the nodes are often very different, so that the true kinetic
parameters are effectively divided by norms that are widely
distributed, and if there is any cluster before scaling, it should be
removed by the scaling itself.

Note that false positives are assumed to have small coefficients
in the representation, so when the threshold is small, even a small
change of threshold will significantly reduce the number of false
positives that we detect. We can monitor how fast the decay of
total links detected is, as a function of the threshold, and
conjecture that, as soon as the decay goes from fast to slow, we
have probably already eliminated most false positives. We then
select this transition point as a suitable value of the threshold.

In Appendix A we will make all these assumptions quantitative
enough to be automatically implemented. The automatic choice of
threshold along the lines of this heuristic gives high true positive
rates and low false positive rates. In Fig. 4(b) we plotted the
average true positive rates and average false positive rates
computed by using, in step D of the algorithm, the values of K

estimated with the method of Appendix A. With 0.10 relative noise
in the trajectories, we have a significant average true positives rate
of about 0.61 with average false positives rate of only 0.025.
4. Discussion

There are still many open questions whose answers will shape
the way augmented sparse reconstruction methods are applied to
network reconstruction. What is the limiting node sparsity that
Fig. 6. True positive rates as a function of the attenuation coefficients of quadratic

and hyperbolic terms. Noise level in the trajectories is 0.15. The value of the

threshold multiplier K is set to keep the false positive rate at 0.1.
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still allows the network itself to be recovered with this method?
How are the error rates affected if only a subset of the variables is
available? How does the network we compute on this subset of
variables relates to the full network? If we have a node that is
unrelated to the chosen subset of the network, it tends to have a
greater portion of its norm accounted for by the random terms,
and this can be used to decide whether it is well connected to the
other variables, but further research in this direction is needed.

In some cases the ‘skeleton’ of the network may be available,
for example for protein networks we may know roughly how the
system is connected for healthy cells. Can we use this additional
information to detect, with this method, whether patients with
cancer develop additional strong links among nodes? Preliminary
evidence suggests that small new links that do not make the
system unstable are often detectable, but it would be interesting
to use the available information on the skeleton of the network
directly in the algorithm.

Even when previous information on the network is not
available, it is very important for clinical applications to
determine whether a specific protein has very distinct representa-
tions for cancerous cells and for healthy ones. If this is the case,
then the reconstruction algorithm can predict changes in the
signaling pathways that are likely due to the cancer itself.

One possible extension of our method is to perform the
estimation of links only on local subsets of trajectories. This local
application of the algorithm may highlight different links that
could be dominant for different sets of initial conditions, in
Napoletani and Sauer (2008) we show that this strategy is indeed
feasible. Note that the augmented sparse reconstruction scheme
has an edge over simple l2 regression especially when there is a
very limited set of initial conditions. Even in the case in which it is
possible to span the entire phase space of the network, there is a
limit to the density of the initial conditions that can be taken and
therefore a local application of this method will be beneficial
(because there are only a few local trajectories). By putting
together the information on links that arise in different regions of
the phase space it may be possible to find very tenuous links that
would otherwise be undetectable in a global analysis. A clear
advantage of a local version of the method is its generality, since
simple, low degree polynomial models can always be used.

The augmented sparse reconstruction described in this paper is
able to identify relevant links among nodes in very large systems
of representation and with very noisy conditions, so we expect the
algorithm to scale well to the use of cubic or higher degree terms
in the representation and even to the use of general power
functions, possibly with non-integer and negative exponents. The
use of attenuation of blocks of terms in the representation will
turn out to be even more important when the size of the
dictionary of terms is increased.

We stated in the introduction that a promising approach to
biological networks is to deemphasize exact modeling, in favor of
a robust identification of classes of suitable models. If we take one
step forward in this direction, then the techniques of network
control, and the very notion of global stability of a network, must
be changed in such a way that they are valid for entire classes of
indistinguishable systems (Judd and Smith, 2004) that produce
trajectories that are qualitatively similar. In this perspective, the
reconstruction algorithm described in this paper could be used as
an intermediate step of data-driven control schemes based on
particle filter techniques, by providing an indistinguishable model
that locally behaves as the real one. This potential application of
the augmented sparse reconstruction method would be an
interesting step in the direction of real time, personalized
therapies that require an online estimation and control of specific
pathways in the cell networks of individual patients (Liotta et al.,
2001; Araujo et al., 2005b).
Appendix A. Automatic choice of threshold

Denote by SðKÞ the total number of selected links that are
found in step D of the augmented sparse reconstruction algorithm
by using thresholds Tn ¼ Ksn. We can split SðKÞ as SðKÞ ¼ StðKÞ þ

Sf ðKÞ where StðKÞ denotes the number of true computed links and
Sf ðKÞ the number of false computed links. Since for each node we
have only a small number of true links by assumption, and their
corresponding coefficients in the representation are, in general,
very large, we can conjecture that, as we let K increase from 0 to
1 in intervals of dK, StðKÞ will decrease very slowly at the
beginning. Since StðKÞ assumes only integer values, this slow
decay will appear as infrequent small jumps, this means that the
value of the differences dSðKÞ ¼ SðK þ dKÞ � SðKÞ of SðKÞ will be
dominated by the differences dSf ðKÞ of Sf ðKÞ for small values of K

and by the differences dStðKÞ of StðKÞ, for larger values of K. If this
conjecture is correct, it seems possible to infer some of the
properties of Sf ðKÞ which is not known, from those of SðKÞ, which
is generated by the algorithm.

In Fig. 7(a)–(c) we show approximations to dStðKÞ, dSf ðKÞ and
dSðKÞ for a specific reconstruction with relative noise in the time
series of the order of 0.10. Note that SðKÞ is identically zero for
K43:26, we can immediately see the similarity of dSðKÞ and dSf ðKÞ

in the frequency of negative jumps for small values of K. The
frequency of jumps of dSðKÞ greatly decreases around K ¼ 0:29. It
looks like there is for that value of K a transition point such that
frequency of jumps is much higher before the transition point, and
much lower after it. To see this transition point more clearly, let
K1; . . . ;KM be the values of K, ordered from smallest to largest, for
which dSðKÞa0 and define the function JðiÞ ¼ Ki � Ki�1, i ¼

2; . . . ;M that computes the width of negative jumps. We plot J

in Fig. 7(d) and we can see that for i � 57 we suddenly have much
wider intervals between jumps, this value of i corresponds to
K57 � 0:29 as we would expect from our analysis of dSðKÞ. We
argue that a suitable value Kf of the threshold multiplier K is the
one for which JðiÞ has very different local averages for iof and i4f .
We use the following rule to find this transition value Kf that
determines the passage from high to low frequency of jumps
in dSðKÞ:
E.
 Set an integer I, let VðiÞ ¼ ðJ̄i�IÞ=ðJ̄iþIÞ, i ¼ I; . . . ;M � I, where we
denote by J̄i�I the mean of J for values between i� I and i and
by J̄iþI the mean of J for values between i and iþ I. Denote by f

the index for which VðiÞ is minimum, and by Kf the
corresponding threshold multiplier.

Basically, for each jump i, we compute the means of the length
of intervals in-between jumps for the set of I consecutive jumps
before the jump i and for the set of I consecutive jumps after the
jump i. Then we take their ratio to measure how much the average
length of intervals between the jumps is changing. Finally we
select the jump for which this ratio is maximum.

In Fig. 4(b) from Section 3.3 we plotted the average true
positive rates and average false positive rates computed by using,
in step D of the algorithm, the values of K estimated with the
heuristics of this section. With 0:10 relative noise in the
trajectories, we have a significant average true positives rate of
about 0:61 with average false positives rate of only 0:025.

Remark A.1. To generate Fig. 7 we chose a fine uniform sampling
dK ¼ 0:001 of K, up to K ¼ 3:5, so that dSðKÞ never goes below �2.
To have the limiting case in which dSðKÞX� 1 for all K seems to
require excessively fine sampling rate.

Remark A.2. When the total number of jumps is about 120 (as in
Fig. 7(d)), it is reasonable to take the size I of the two sets of
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Fig. 7. Plots of: (a) the change dStðKÞ of true links detected by the algorithm A–D for a specific reconstruction, as a function of threshold multiplier K; (b) the change dSf ðKÞ

of detected false links; (c) the change dSðKÞ of all detected links. In plot (d) we show JðiÞ, the distance between the i� 1-th and the i-th negative jumps in dSðKÞ. The arrow in

plot (d) points to the index values, around i ¼ 57, for which we have a large change of mean frequency of jumps.
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consecutive jumps (before and after the i-th jump) to be small
compared to this total, on the other hand we want a good estimate
of the averages, so I should not be too small; we settled for I ¼ 20
and we estimated the values of K by applying step E to the
collection of representations for all nodes found by the algorithm.
Other values of I � 20 give comparable threshold levels.
Remark A.3. We use 20 realizations for each noise level in
computing the averages of the true and false positive rates shown
in Fig. 4(b) in Section 3.3. For all 20 realizations the computed true
positive rates differ from the averages by at most 0.11 units, with
standard deviation, at each noise level, of at most 0.058. The false
positives rate is below 0.11 for all realizations and all noise levels.
Appendix B. The EGFR network

This is a portion of the EGFR network as described in Araujo et al. (2005a). Before each differential equation, we label the protein
whose concentration dynamics is described by that equation.
[R]
 _x1 ¼ 0:06x2 � 0:003x1x23
[Ra]
 _x2 ¼ �0:06x2 þ 0:2x3 þ 0:003x1x23 � 0:02x2
2

[R2]
 _x3 ¼ �1:1x3 þ 0:01x4 þ 0:01x2
2

[RP]
 _x4 ¼ x3 � 0:01x4 þ 0:2x5 þ 0:3x6 þ 0:05x7 þ 0:03x8 þ 0:6x9 þ 0:3x10 þ 0:3x11 þ 0:12x12 � 0:0045x4x13
�0:0009x4x14 � 0:0009x4x15 � 0:06x4x16 � 0:006x4x17 � 0:003x4x19 � 0:09x4x20 � 0:00024x4x22 � 450x4=ð50þ x4Þ
[R-PL]
 _x5 ¼ �1:2x5 þ 0:05x6 þ 0:06x4x16
[R-PLP]
 _x6 ¼ x5 � 0:35x6 þ 0:006x4x17
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[R-G]
 _x7 ¼ �0:05x7 þ 0:06x8 � 0:01x7x21 þ 0:003x4x19
[R-G-S]
 _x8 ¼ �0:09x8 þ 0:0045x4x13 þ 0:01x7x21
[R-Sh]
 _x9 ¼ �6:6x9 þ 0:06x10 þ 0:09x4x20
[R-ShP]
 _x10 ¼ 6x9 � 0:07x10 þ 0:0009x4x14
[R-Sh-G]
 _x11 ¼ �0:4x11 þ 0:0214x12 þ 0:0009x4x15 � 0:01x11x21 þ 0:003x10x19
[R-Sh-G-S]
 _x12 ¼ �0:1843x12 þ 0:00024x4x22 þ 0:009x10x13 þ 0:01x11x21
[G-S]
 _x13 ¼ 0:03x8 þ 0:0429x12 � 0:0015x13 þ 0:1x22 � 0:0045x4x13 � 0:009x10x13 � 0:021x13x14 þ 0:0001x19x21
[ShP]
 _x14 ¼ 0:3x10 þ 0:1x15 þ 0:1x22 � 0:0009x4x14 � 0:021x13x14 � 0:003x14x19 � 1:7x14=ð340þ x14Þ
[Sh-G]
 _x15 ¼ 0:3x11 � 0:1x15 þ 0:064x22 � 0:0009x4x15 þ 0:003x14x19 þ 0:03x15x21
[PLCg]
 _x16 ¼ 0:2x5 � 0:06x4x16 þ x17=ð100þ x17Þ
[PLCgP]
 _x17 ¼ x6 þ x17 þ x18 þ x4x17 þ x17=ð1þ x17Þ
[PLCgP-I]
 _x18 ¼ x17 � 0:03x18
[Grb]
 _x19 ¼ 0:05x7 þ 0:1x11 þ 0:0015x13 þ 0:1x15 � 0:003x4x19 � 0:003x10x19 � 0:003x14x19 � 0:0001x19x21
[Shc]
 _x20 ¼ 0:6x9 � 0:09x4x20 þ 1:7x14=ð340þ x14Þ
[SOS]
 _x21 ¼ 0:06x8 þ 0:0214x12 þ 0:0015x13 þ 0:064x22 � 0:01x7x21 � 0:01x11x21 � 0:03x15x21 � 0:0001x19x21
[ShG-S]
 _x22 ¼ 0:12x12 � 0:064x22 � 0:00024x4x22 þ 0:021x13x14 þ 0:03x15x21
[EGF]
 _x23 ¼ 0
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