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Abstract— The increasing need of knowledge in the treatment
of brain diseases has driven a huge interest in understanding the
phenomenon of neural spiking. Researchers have successfully
been able to create mathematical models which, with specific
parameters, are able to reproduce the experimental neuronal
responses. The spiking activity is characterized using spike
trains and it is essential to develop methods for parameter
estimation that rely solely on the spike times or interspike
intervals (ISI). In this paper we describe a new technique for
optimization of a single neuron model using an experimental
spike train from a biological neuron. We are able to fit model
parameters using the gradient descent method. The optimized
model is then used to predict the activity of the biological
neuron and the performance is quantified using a spike distance
measure.

I. INTRODUCTION

Neurons form the basic building block of our brain and

central nervous system. Networks of neurons communicate

with each other to perform complicated tasks. This com-

munication amongst neurons is through the ‘spiking’ of the

membrane potential [1]. Over the last 60 years there has

been extensive research to model the spiking phenomenon.

One of the popular classes of models used are nonlinear

dynamical systems. In 1952, Hodgkin and Huxley developed

a model [2] which was able to reproduce the membrane

potential of a giant squid axon. The model consists of

four differential equations and a number of parameters that

relate to physiological variables such as gating currents,

ion concentrations and conductances. This makes the model

complex and computationally expensive. Since then there has

been a large number of efforts to develop models which can

reproduce the full range of spiking behavior but are simple in

nature and computationally inexpensive. [3] summarizes few

successful models and compares them based on previously

mentioned attributes. The Izhikevich model [4] and the aug-

mented multi-timescale adaptive threshold (AugMAT) model

([5], [6]) are two such models which outperform the rest.

Another class of models present in literature are those based

on stochastic processes such as renewal theory or Markov

chain processes [7].

Following the success of these different single neuron

models, the problem of parameter fitting has drawn huge
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attention. Efforts are being made to accurately estimate

model parameters from experimental data using innovative

methods. The unscented kalman filter (UKF) [8] is one of

the successful methods for estimating the state of a nonlinear

system based on observed measurements. A summary of the

efforts to use kalman filters to estimate the spiking of a

neuron can be found in [9]. However, such methods require

the nonlinear models to satisfy the observability condition.

A different approach to estimate parameters or states is to

develop a cost function and use optimization techniques

to find the solution which gives the minimum cost. [10]

summarizes the efforts in this area and mentions the different

methods currently being used. It is interesting to note that in

a few cases even a simple ‘brute force’ technique is found to

be effective. This suggests that there is still a huge scope of

research in this area, mainly to develop automated techniques

which can fit models to neural spike trains.

In this paper, we describe a novel approach to neuron

model optimization by introducing a new technique to com-

pare spike trains of single neurons. We are able to estimate

the parameters of the model by formulating a nonlinear

optimization problem using the proposed performance func-

tion. The optimal solution is found by using the gradient

descent method. The optimized model is then simulated to

predict the spiking activity of the neuron. The spike trains

(of the model and biological neuron) are compared using the

bivariate SPIKE-distance function [11].

II. THE PROBLEM

The purpose of this paper is to be able to successfully

predict the spiking activity of a biological neuron. There

are numerous mathematical models which can reproduce the

neuronal response. The problem is, therefore, to tune the

parameters of the model based on observed data. The three

major aspects of this problem are (i) the model, (ii) the

comparison technique and (iii) the method of optimization.

A. Nonlinear Model :

We have used the augmented version of the Multi-

timescale Adaptive Threshold (AugMAT) model [6]. This

model is able to reproduce the different spiking behaviors of

a biological neuron, and is computationally inexpensive at

the same time. It is described by two differential equations.

The first equation represents the membrane potential, v(t)
and the other is the adaptive threshold, θ(t). The neuron

spikes if the membrane potential becomes greater than the

threshold. Immediately after spiking the threshold is reset.

In Eq. 1, ti is the ith spike time, L is the number of
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threshold time constants, τj(j = 1..L) is the jth time

constant, αj is the weight corresponding to τj and ω is the

resting value. The time constants τj , τm, τv and R are fixed.

τm
dV

dt
= −V +RI(t)

θ(t) =
∑

i

H(t− ti) + β

∫ t

0

K(s)V ′(t− s)ds+ ω

H(t) =

L
∑

j=1

αje
−t/τj

K(s) = se−s/τv

(1)

In this paper we have chosen L and the ‘fixed’ parameters

as suggested by [6].

τm = 10ms, R = 50MΩ

τv = 5ms, L = 2

τ1 = 10ms, τ2 = 200ms

The input to the model, I(t) should be in nA. In the process

of model optimization, α1, α2, ω and β are estimated. Initial

condition, v(t0) = 0 is fixed and θ(t0) = θ0 is estimated.

In total, there are five variable parameters for the model

considered in this paper. Fig. 1 shows a simulation of the

model, and the computation of the spike train from the states

of the differential equations. The set of spike times, tk, is

defined as

ǫ(t) = V (t)− θ(t)

tk : ǫ(tk) = 0 ∧ ǫ′(tk) > 0
(2)
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Fig. 1. [α1 = 180, α2 = 3, β = 0.2, ω = 15] The top row is the
input current. It is a sum of different exponentials, to reproduce the type
of stimulus a biological neuron receives from its dendritic tree. The second
row shows v(t) (blue, dashed) and θ(t) (red, solid) functions. The last row
shows the constructed spike train, which is a binary string of 1s and 0s

B. Performance function :

We propose a new performance function that takes into

consideration the number of spikes in each spike train as

well as the synchronization of these spikes. The surface was

computed as a function of changing parameters and was

found to be smooth. It is not a complex function, and hence

does not affect the speed of optimization.

The spike times are extracted from the spike train,

tspikes =
[

t1 t2 . . tn
]

where t1, t2, .. are the time of spikes and n is the total

number of spikes in the spike train of length tf . A ‘staircase’

is given by

ψ(t) =

n
∑

k=1

υ(t− tk) (3)

where υ(x) is the step function which is equal to 1 for x > 0
and 0 otherwise.

Fig. 2 gives a graphical illustration of how ψ(t) is created

from the spike train. The error, ξ, is given by the square

of the difference between the area of the staircase function,

ψ(t), of each model.

ξ =
1

t2f

∫ tf

0

[ψ1(t)− ψ2(t)]
2dt (4)

ψ1(t) and ψ2(t) are the staircase functions of two different

spike trains.
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Fig. 2. Comparison of two neuron models using the performance function
defined in Eq. 4. (i) Spike train of model 1 (Regular Spiking) (ii) ψ1(t)
(blue solid line), ψ2(t) (red dotted line). The error, ξ, is the square of the
area between the two lines (iii) Spike train of model 2 (Bursting)

The proposed error function is used to fit model parameters

to the experimental data (explained in section III). The model

is then simulated with the given input current. To evaluate the

performance of the model and synchrony of the synthetic and

experimental spike train, we use the bivariate SPIKE-distance

described by Kreuz et al. in [11]. This comparison technique

computes the instantaneous differences between the ISIs. The

spike distance is defined as the temporal average of the time

profile. The value is normalized between 0 and 1, with 0

respresenting two exactly same spike trains.

III. MODEL OPTIMIZATION

There are numerous iterative algorithms available in the

literature of numerical optimization [12] to search the min-

imum of a function (ξ). Gradient based algorithms compute

the gradient of the function with respect to the parameter

vector, p. The vector is then updated using the gradient. If
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the update, p̂ is in the opposite direction of the gradient, then

by updating the vector iteratively, it converges to a minima.

To reach a maxima, the update should be in the direction of

the gradient.

p̂ = p− ν
∂ξ

∂p
(5)

ν is the step size of the gradient based search. For the

problem defined in the previous section, the performance

function, ξ, is given by Eq. 4 and the parameter vector

consists of the variable parameters of the AugMAT model.

p = [α1, α2, β, ω, θ0]
T

Computation of the gradient requires analytical formulae of

the derivatives of the performance function with respect to

each parameter.

∂ξ

∂p
=

1

t2f

∫ tf

0

2[ψ(t)− ψd(t)]
∂ψ(t)

∂p
dt (6)

∂ψ(t)

∂p
=

M
∑

k=1

δ(t− tk)[−
∂tk

∂p
] (7)

In Eq. 7, the ∂tk
∂p expression represents the change in the

kth spike time with respect to the change in parameter p. A

similar computation has been done by Booij and Nguyen in

[13]. Applying the total differential identity to the variable

ǫ(t) (Eq. 2) in our problem,

ǫ′(tk)dtk +
∂ǫ(tk)

∂p
dp = 0

∂tk

∂p
=

−∂ǫ(tk)
∂p

ǫ′(tk)

(8)

ǫ′(tk) =
ǫ(tk + δ)− ǫ(tk)

δ

dǫ(tk)

dp
=
dV (tk)

dp
−
dθ(tk)

dp

(9)

dV (tk)

dp
= 0

dθ(tk)

dp
=
∂θ(tk)

∂p
+

∑

i:ti<tk

∂θ(tk)

∂ti

∂ti

∂p

(10)

Combining Eqns. 5-10, the gradient of the proposed perfor-

mance function can be computed for each element in the

parameter vector p.

IV. RESULTS

Experimental data (of an L5 neuron) was obtained from

the International Neuroinformatics Coordinating Facility

(INCF) [14] 1. A single neuron was stimulated and the

membrane potential was recorded. There were a total of

13 trials performed and the current and voltage traces were

1http://www.incf.org/community/competitions/spike-time-
prediction/2009/challenge-a

recorded and made publicly available. We used this data to

optimize the AugMAT model, and evaluate the predictive

performance.

The model was optimized using a 4s spike train where

the neuron was stimulated with constant current. The spike

times were extracted and used to estimate parameters of the

model. The parameter space was chosen by setting minimum

and maximum values, taking into consideration the nature of

spiking. Different parameter sets from this space were able

to generate the different kinds of responses.

χ =[{α1, α2, β, ω, θ0} : 100 < α1 < 220, 0 < α2 < 8,

0.1 < β < 0.5, 5 < ω < 15, 0 < θ0 < 100]

100 random samples were chosen from the parameter space.

Each sample serves as an initial parameter vector for the

optimization algorithm. The optimal parameter vector for

each starting point was found using the gradient descent

method (GD). The number of iterations was set at 20, since

it was observed that there was no substantial improvement

in the error after 20 iterations. These estimated parameters

were then used to simulate the model. The simulated spike

train was compared to the experimental spike train using the

bi-variate SPIKE-distance [11].
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Fig. 3. Prediction results : (a) shows the initial distribuition of the
SPIKE-distance measure (100 samples) and (b) shows the distribution
after optimization is achieved. The red dotted line shows the multi-variate
distance measure over the 13 different trials of the same experimental neuron

Fig. 3 shows the initial and final bi-variate spike distances

computed for each sample. The distribution of the spike

distances for the initial population was 0.28 ± 0.16. After

optimization, the final spike distances were 0.10 ± 0.08.

62% of the final predicted spike trains had a SPIKE-distance

of less than 0.1. As a benchmark, the multi-variate SPIKE-

distance for the 13 trials of the L5 neuron was 0.03, which is

indicative of the variability in the experimental neuron. This

indicates that the results achieved are meaningful keeping

in consideration the inaccuracies of the mathematical model

itself.

As a comparison to our optimization technique, we also

used the Nelder-Mead (NM) [15] method. The same initial

population (as in GD) was taken and the model parameters

were estimated by minimizing the SPIKE-distance using

NM. We found that the prediction results were 0.13± 0.12.

The GD method also took less time as compared to the NM

method. Fig. 4 shows the spiking activity of the biological

neuron and the optimized model. The results of the SPIKE-

distance between the predicted and actual spike trains for the
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Fig. 4. The first 4 s (left of the vertical partition line) is used for model optimization. The model (bottom row) [α1 = 183.4, α2 = 2.53, β = 0.087, ω =
11.93, θ0 = 58.2] is then simulated using the input current provided (top row) and compared to the experimental data (middle row)

100 samples are summarized in Table 1.

TABLE I

PREDICTION RESULTS (SPIKE-DISTANCE) FOR 100 SAMPLES

Initial After GD After NM

Mean 0.28 0.10 0.13

Std. Dev. 0.16 0.08 0.12

V. CONCLUSIONS AND FUTURE WORK

A. Summary

Our objective was to predict the neural spiking activity of a

biological neuron using mathematical models. We optimized

the model by computing the error between the model and

the experimental spike trains using the proposed ‘staircase’

function. Using the gradient descent technique, we were

able to find optimal parameters which minimized this error.

We then simulated the AugMAT model with the estimated

parameters, and compared the predicted spike train to that of

the experimental neuron using the SPIKE-distance function.

Results showed that the final responses (spikes) were very

‘close’ to the biological neuron and we can conclude that

the optimized model could be used as an efficent predictor

of the neuron. Our method of optimization was also more

accurate and faster than the Nelder-Mead method.

B. Future work

While our method successfully optimizes single neuron

models, the objective is to characterize neuron populations

and build predictors for a network of neurons interacting

among themselves. Once the model of the network of neu-

rons is estimated, it can be used to detect ‘faults’ in the

experimental system. The algorithm can then be used in a

closed loop form to predict and control brain activity. Po-

tential applications are predicting and suppressing epileptic

seizures before they occur, and controlling abnormal spiking

patterns in the brain.
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