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Predicting chaotic time series with a partial model
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Methods for forecasting time series are a critical aspect of the understanding and control of complex networks.
When the model of the network is unknown, nonparametric methods for prediction have been developed, based
on concepts of attractor reconstruction pioneered by Takens and others. In this Rapid Communication we consider
how to make use of a subset of the system equations, if they are known, to improve the predictive capability of
forecasting methods. A counterintuitive implication of the results is that knowledge of the evolution equation of
even one variable, if known, can improve forecasting of all variables. The method is illustrated on data from the
Lorenz attractor and from a small network with chaotic dynamics.
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One of the hallmarks of chaotic systems is the breakdown
of accurate prediction. Due to exponential divergence of
trajectories, long-term forecasting is seldom possible. On
the other hand, short-term prediction is often feasible and
significant progress has been achieved. In particular, when
the system is known through time series observations alone,
nonparametric methods have been developed to forecast
chaotic trajectories.

For relatively low-dimensional chaotic dynamics, Takens’
method of attractor reconstruction [1–4] has long been the
foundation of nonparametric time series prediction methods.
Under suitable genericity hypotheses, the attractor may be rep-
resented by delay coordinate vectors built from the time series
observations, and methods of prediction, control, and other
applications from chaotic time series have been developed
[5–7]. In particular, time series prediction algorithms locate
the current position in the delay coordinate representation
and use analogs from previously recorded data to establish
a local, low-order predictive statistical model, which can be
accomplished in several ways [8–21].

At the other end of the spectrum are parametric forecasting
methods, applicable when a physically motivated, complete
model for the network is available. Nonlinear approaches to
filtering [22–25] allow forecasting models to use the model
equations to develop close to optimal predictions. Even if
some variables are not observable, they may be reconstructed,
provided that their model equations are known. However,
when the model is not completely known, there has been little
progress, and few methods are known that are able to span the
gap between nonparametric and data assimilation methods.

In this Rapid Communication we consider the problem
where not only is time series data available from a dynamical
network, but in addition we possess a subset of the dynamical
equations for the network. This situation reflects the case of
a “partial model,” in which evolution equations for some, but
not all, of the measured variables are available. We address the
question of how best to extend nonparametric methods with
this added, partial information for system prediction purposes.
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This problem is endemic throughout the study of physical
processes, where the amount of accessible data can easily
exceed the availability of physical parametric models. In geo-
physical processes, basic principles may constrain a variable
in terms of other driving variables in a way that is well
understood, but the driving variables may be unmodeled or
modeled with large error [26–29]. In a numerical weather
prediction code, the physics may be known on the small scale
but the large scale might be poorly modeled [30,31]. In a
fast-slow system governing excitable media, the slow variables
are often driven in a known way by fast variables that are
unmodeled [32,33].

A specific example serves to illustrate the problem. Assume
we can observe the x, y, and z variables of the Lorenz-63
system [34]:

ẋ = σ (y − x),

ẏ = x(ρ − z) − y, (1)

ż = xy − βz,

where σ = 10, ρ = 28, and β = 8/3, but that we have
no knowledge of the generating equations. A reasonably
successful nonparametric forecasting method with predic-
tion horizon T can be derived from attractor reconstruc-
tion techniques, using delay-coordinate versions of the cur-
rent x, y, and z to predict future y values, for example.
The direct prediction method begins by locating neighbors
[y(t ′),y(t ′ − h), . . . ,y(t ′ − dh)] of the current delay coor-
dinates [y(t),y(t − h), . . . ,y(t − dh)] in the observed data,
where h is the sampling step size. The neighbors can be
found by minimizing the Euclidean distance norm or any other
appropriate norm. Then, the known values y(t ′ + T ) are used
in a regression with a local model (typically locally constant
or locally linear) to predict the future value y(t + T ). Since we
know the x and z variables as well, we can include their delay
coordinates to improve location of appropriate neighbors,
which typically enhances the accuracy of the prediction of
y(t + T ).

Now assume that in addition to the time series data, we have
extra knowledge in the form of a differential equation for one
of the variables, say the y variable of the Lorenz system. In
the current example, this assumption may consist of knowing
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the single equation ẏ = x(ρ − z) − y. Here we consider y to
be the modeled variable, whose evolution is known in terms of
the unmodeled variables x and z; the evolution equations for x
and z are considered to be unknown to us. The central question
of this Rapid Communiction is how to use the new information.
Our proposed strategy is to use the differential equation to
interpolate the known data, use the results to supplement the
known data, and thereby substantially improve the accuracy
of direct prediction methods.

This is achieved by solving the differential equation on a
finer sampling scale. Assume the data is obtained by sampling
the system with step size h. Subdivide the sampling interval
into m smaller steps of length k, or h = mk. We will use the
training data defined on the grid of step size h, and the single
differential equation for y, to generate consistent x,y,z on
the finer grid of step size k. The procedure works as follows:
At a given sampling time ti , apply a multistep quadrature
method (see Supplemental Material [35]) that uses previous
x, y, and z time series values on the step size h grid, and the
differential equation for ẏ, to approximate y(t + k), where k
is the new, smaller step size. This will require a quadrature
method for which the input and output step sizes can be
arbitrarily adjusted, since the input data has step size h and the
output has step size k. We used a modified “fractional-step”
multistep method that uses arbitrary h,k and can be built with
arbitrary order. As an example, if h = 5k, a useful fourth-order
multistep method for ẏ = f (y) is

y(ti + k) ≈ y(ti) + k

4∑

j=1

bjf (y(ti − (j − 1)h)), (2)

where [b1,b2,b3,b4] = [3591,−1003,533,−121]/3000. We
use an explicit method like (2) as a predictor, and then use an
analogous implicit method as corrector to improve fidelity. The
derivation and directions for carrying out an explicit or implicit
fractional-step multistep quadrature method for arbitrary order
and step sizes h and k are given in the Supplemental Material.

Once y(ti + k) has been calculated on the entire time grid,
we use the delay coordinates of the y variable at the ti + k times
to find its nearest neighbors and the corresponding x and z
values. This allows us to form a locally constant reconstruction
of the x and z variables at time ti + k, namely, x(ti + k) and
z(ti + k), by averaging their respective nearest neighbors in
delay-coordinate space. Note the curious fact that although we
only know the differential equation for y, the modeled variable,
we have used the single equation to extrapolate our knowledge
to the unmodeled variables x and z at the new fine-grid points.
Now that we have computed values of x, y, and z at all ti + k
times, we are in position to approximate y(ti + 2k) with the
same quadrature formula.

The same idea is repeated to compute values at ti + 2k,
ti + 3k, and so forth until all variables x, y, and z are known
on the finer k grid. The result of this procedure is essentially
an interpolation of the training set data, where the accuracy is
leveraged by knowledge of the partial model. In Fig. 1(a), we
have available a training set of 2000 observations each of x, y,
and z from the Lorenz system at h = 0.2 time intervals. These
intervals are divided into m = 10 substeps, and a four-step,
fourth-order multistep quadrature method is used to integrate
the known y equation. As discussed above, we can infer the
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FIG. 1. Using one equation from the Lorenz system, the data
set is interpolated to reconstruct all of the system variables at
subsample intervals. (a) Measured data y values (black circles)
are interpolated by the multistep equation solver (gray circles),
approximately matching the exact solution of the Lorenz equations
(gray line). At each interpolation step, we use delay coordinates of
the y variable to reconstruct the corresponding (unmodeled) (b) x

and (c) z variables. In (b) and (c), the reconstructed x and z variables
(gray circles) are compared to the exact solution (gray line).

x and z variables as well at the small step size, which are
shown in Figs. 1(b) and 1(c). For this example, we used eight
delays, with a time delay of 0.2 time units, and ten neighbors
to reconstruct the unmodeled x and z variables at the finer grid
points.

We have described the method as working forward in time
in steps of size k from the known data point on the h grid.
Since ordinary differential equations are time reversible, we
can integrate backwards in time and average the two results to
improve fidelity of the reconstruction.

After supplementing the training data set with the
new interpolated values, direct nonparametric prediction
algorithms can be applied with the augmented data set.
As previously described, direct prediction begins by
locating the neighbors [y(t ′),y(t ′ − h), . . . ,y(t ′ − dh),
x(t ′),x(t ′ − h), . . . ,x(t ′ − dh),z(t ′),z(t ′ − h), . . . ,z(t ′ − dh)]
of the current delay coordinates [y(t),y(t − h), . . . ,
y(t − dh),x(t),x(t − h), . . . ,x(t−dh),z(t),z(t−h), . . . ,z(t−
dh)] where d is the number of delays and h is the sampling
step size. Since the unmodeled x and z variables are observed,
their delay coordinates can be included to enhance the
identification of appropriate neighbors. The known y(t ′ + T ),
x(t ′ + T ), and z(t ′ + T ) values are then used with a local
model (for example locally constant, which is just an average
of the neighbors) to predict y(t + T ), x(t + T ), and z(t + T ).
Note that both the standard nonparametric method and the
proposed partial model method use direct prediction. The
difference is that while the nonparametric forecast relies on
the original training set at sample step size h to find the nearest
neighbors, the partial model method has access to a finer
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FIG. 2. Forecasting an individual trajectory of the Lorenz-63 y

variable. Using the equation to supplement the forecast (gray circles)
is more accurate than the direct forecast method alone (open circles).
The black curve is the true y trajectory and the black circles on the
black curve denote the sampling rate (h = 0.2).

resolution training set at sample rate h/m. Effectively, we
have leveraged the partial knowledge of the system to build a
more robust training set for finding better neighbors during
direct prediction. Additionally, use of this partial knowledge
allows us to predict at arbitrary step size h/m allowing for
finer prediction resolution. This combination of parametric
and nonparametric methods results in a hybrid method which
improves the predictability of the system compared with
nonparametric methods alone.

Figure 2 shows an example of this improvement. Time
series data of length 2000 is known up to time t = 0; the
gray curve is the prediction going forward by the partial
model method, compared with the exact trajectory (black
curve). The black circles represent the time series sampling
rate from the known data, and the open circles denote the
nonparametric (direct forecasting) predictions without use of
the partial model.

Figures 3(a)–3(c) compare mean forecasting error for the
partial model method and the nonparametric method under
noiseless conditions. Both methods used eight delays with
a time delay of 0.2 units and ten nearest neighbors in
constructing a locally constant forecast model. The partial
model method consistently outperforms the nonparametric
method at all short-term forecasting horizons. Note a side
benefit of the method: Even though the sampling rate of
the data is sparse, predictions can be made not only at the
original sampling rate but at any desired intermediate time
horizon. Even under a moderate amount of observational
noise [Fig. 3(d)] the partial model method offers an improved
short-term forecast of the y variable when compared to the
nonparametric approach.

For very small sampling rates, the advantage of the partial
model approach decreases. For example, when the sampling
rate is reduced to h = 0.04, the partial model approach has
prediction error RMSE equal to 1.00, compared with 1.34 for
the nonparametric method, for prediction horizon T = 0.2.
These errors are averaged over 1000 realizations.

Now that we have shown a simple example in detail, we
describe the method in more general terms. In the general net-
work setting, assume x1, . . . ,xp are generic observable nodes
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FIG. 3. Forecasting error statistics versus prediction horizon T

for the Lorenz-63 (a) y, (b) x, and (c) z trajectories over 5000
realizations (standard error is less than 0.15 at all forecast horizons).
The data set consists of 2000 points sampled at h = 0.2. Using our
knowledge of the y equation, we can interpolate the training data at
subsample step size k = 0.02 and supplement the original training
set. Direct forecasting using this interpolated data set (lower trace)
outperforms direct forecasting with access to only the original data set
(upper trace). Note the finer forecasting resolution of the lower trace.
(d) Even under a moderate amount of observational noise (8% of the
standard deviation), our hybrid forecasting offers better short-term
prediction of the y variable than the nonparametric forecast.

in the sense of Takens [1,3], and nodes x1, . . . ,xp, . . . ,xr ,
where r > p, form the complete input set to x1, . . . ,xp.
Assume further that x1, . . . ,xr are observed in the training
data at step size h and that we know the evolution equation of
xi for 1 ! i ! p, say ẋi = fi(x1, . . . ,xr ). As above, we apply
a multistep method to the known equations to upsample the
values of x1, . . . ,xp, and use a nonparametric method with
the delay vectors of x1, . . . ,xp to approximate the remaining
unmodeled variables at the same time points, resulting in an
interpolation of all r variables at the smaller time step k. This
augmented training set is then used along with a nonparametric
prediction algorithm to obtain forecasts for all r variables.

As an illustrative example we consider a network of p + 1
nodes, comprised of a central Lorenz-63 attractor driving a
coupled ring of p Lorenz-96 nodes [36]. We assume that we
know the differential equation of the ring nodes

ẋi = (xi+1 − xi−2)xi−1 − cixi + Fi + bix
1
p+1 (3)

for i = 1, . . . ,p, and lack knowledge of the evolution equa-
tions for all three Lorenz-63 variables x

{1,2,3}
p+1 . In other words,

we are driving the Lorenz-96 ring with the x coordinate of the
classical Lorenz attractor, while assuming that we know the
Lorenz-96 equations but not the classical Lorenz equations.
We form the training set from observations of variables
x1, . . . ,xp,x1

p+1 [not including the y and z variables of the
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FIG. 4. Improved short-term forecasting of a small network.
(a) Example interpolation of one node from the four node chaotic
network driven by Lorenz-63. The data set (black circles) is used
to interpolate Lorenz-96 (gray circles). (b) At each step of the
interpolation, delay coordinates reconstruct the unmodeled Lorenz-63
forcing term (gray circles). (c) Mean forecasting error of the chaotic
network over 300 realizations. Standard error is less than 0.01 at all
forecast horizons. (Fewer realizations were necessary compared with
Fig. 3 due to smaller variation in the dynamics.) Direct forecasting
using this interpolated data set (lower trace) outperforms direct
forecasting with access to only the original data set (upper trace).

classical Lorenz, since these variables do not occur in (3)] and
attempt to forecast the Lorenz-96 system.

Figure 4 shows results from a Lorenz-96 ring consisting of
p = 4 nodes with Fi = 2 and bi = 1/8 for i = 1, . . . ,4 and
[c1,c2,c3,c4] = [1,1.2,1.4,1.6]. We collect 4000 data points

from each node of the network, sampled at h = 0.4. For this
example, the prediction was done using six delays with a time
delay of 0.4 units and 20 nearest neighbors to construct a
locally constant forecast. Without knowledge of Eq. (3), we
can use nonparametric methods to forecast [upper trace in
Fig. 4(c)]. Assuming knowledge of Eq. (3), we can interpolate
the training data from each node [Fig. 4(a)] and simultaneously
reconstruct the Lorenz-63 forcing term [Fig. 4(b)] at step
size k = 0.05. By augmenting the training data with these
interpolated values, the hybrid prediction [lower trace in
Fig. 4(c)] offers an improvement in short-term prediction
accuracy compared to the nonparametric method.

As a hybrid method, this forecasting approach attempts
to explore the middle ground between data-driven statistics,
where no model information is known, and the parametric case
with complete knowledge of the model. We have tried to place
the idea in as general a setting as possible, but it is clear that
many further adaptations can be formulated, depending on the
different sampling rates of distinct variables, and varying levels
of confidence in the separate model equations. The fractional-
step integrators discussed here are the foundation of the idea,
and generalizations to partial differential equation models may
also be feasible and effective.

The limitations of this new hybrid prediction method are
similar to those faced by nonparametric approaches: As the
effective dimension of the dynamics increases, even short-
term prediction becomes more difficult. The role of noise
is also important. We have emphasized the noiseless case to
more clearly explain the method. For data with observational
or dynamical noise, the partial model assumption that a
differential equation is satisfied no longer holds exactly. In
such cases the method should be generalized to include noise
in the underlying model. An optimal approach for this case is
left for future work.
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the National Science Foundation.
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