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Abstract. The use of data assimilation for the merging of observed
data with dynamical models is becoming standard in modern physics.
If a parametric model is known, methods such as Kalman filtering
have been developed for this purpose. If no model is known, a hybrid
Kalman-Takens method has been recently introduced, in order to
exploit the advantages of optimal filtering in a nonparametric set-
ting. This procedure replaces the parametric model with dynamics
reconstructed from delay coordinates, while using the Kalman update
formulation to assimilate new observations. In this article, we study
the efficacy of this method for identifying underlying dynamics in the
presence of dynamical noise. Furthermore, by combining the Kalman-
Takens method with an adaptive filtering procedure we are able to
estimate the statistics of the observational and dynamical noise. This
solves a long-standing problem of separating dynamical and observa-
tional noise in time series data, which is especially challenging when no
dynamical model is specified.

1 Introduction

Methods of data assimilation are heavily used in geophysics and have become common
throughout physics and other sciences. When a parametric, physically motivated
model is available, noise filtering and forecasting in a variety of applications are
possible. Although the original Kalman filter [1] applies to linear systems, more recent
approaches to filtering such as the Extended Kalman Filter (EKF) and Ensemble
Kalman Filter (EnKF) [2–6] allow forecasting models to use the nonlinear model
equations to compute predictions that are close to optimal.

In some cases, a model is not available, and in other cases, all available models
may be inaccurate. In geophysical processes, basic principles may constrain a variable
as a function of other driving variables in a known manner, but the driving variables
may be unmodeled or modeled with large error [7–10]. Moreover, in numerical weather
prediction codes, physics on the large scale is typically sparsely modeled [11,12]. Some
recent work has considered the case where only a partial model is known [13,14].

Under circumstances in which models are not available, Takens’ method of attrac-
tor reconstruction [15–18] has been used to reconstruct physical attractors from
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data. The dynamical attractor is typically represented by vectors of delay coor-
dinates constructed from time series observations, and approaches to prediction,
control, and other time series applications have been proposed [19–21]. In particular,
time series prediction algorithms locate the current position in the delay coordinate
representation and use analogues from previously recorded data to establish a predic-
tive statistical model [22–35]. However, Takens’ method is designed (and proved to
work) for strictly deterministic systems, and the effects of noise, both dynamic and
observational, is not thoroughly understood.

Recently, a method was introduced that would merge Takens’ nonparametric
attractor reconstruction approach with Kalman filtering. Since the model equations
governing the evolution of the system are unknown, the dynamics are reconstructed
nonparametrically using delay-coordinate vectors, and used to replace the model.
The Kalman-Takens algorithm [36] is able to filter noisy data with comparable per-
formance to parametric filtering methods that have full access to the exact model.
The fidelity of this algorithm follows from the fact that Takens’ theorem [15] states
roughly that in the large data limit, the equations can be replaced by the data. The
surprising fact, shown in [36], is that this fidelity is robust to observational noise
which invalidates the basic theory of [15], although a much more complex theory
developed in [44] suggests such a robustness. In fact, by implementing the Kalman
update, it is suggested in [36] that the nonparametric representation of the dynamics
is able to handle substantial observational noise in the data.

In this article we study the effects of dynamic noise (also known as system noise
or process noise) on the Kalman-Takens algorithm. We will verify the effectiveness
of the method on stochastic differential equations with significant levels of system
noise, and show that nonparametric prediction can be improved by the filter almost
to the extent of matching the performance of the exact parametric model. In section
Section 2 we present the specifics of the Kalman-Takens method. A key to effective
application of any Kalman based algorithm is knowing the covariance matrices of
the system and observation noise, which are particularly difficult to separate when
no model is known. In Section 4 we present an adaptive method for separating the
dynamic and observational noise as part of the filtering procedure. The adaptive filter-
ing method naturally complements the Kalman-Takens method by implicitly fitting
a fully nonparametric stochastic system to the data. These methods are combined
in Section 5, where applications to dynamical data with variable settings of delay
coordinates are explored.

2 Kalman-Takens filter

We recall the standard notion of the Kalman filter in the case where the model f
and observation function g are known. Consider a nonlinear stochastic system with
n-dimensional state vector x and m-dimensional observation vector y defined by

xk+1 = f(xk, tk) + wk
yk = g(xk, tk) + vk (1)

where wk and vk are white noise processes with covariance matrices Q and R, respec-
tively. We begin by describing the filtering procedure in the case when f and g are
known.

We are chiefly interested in nonlinear systems, so we will describe a version of
Kalman filtering that is common in this case. The ensemble Kalman filter (EnKF)
[2] represents a nonlinear system at a given instant as an ensemble of states. Here we
initialize the filter with state vector x+0 = 0n×1 and covariance matrix P+

0 = In×n.
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At the kth step, the filter produces an estimate of the state x+k−1 and the covariance

matrix P+
k−1, which estimates the covariance of the error between the estimate x+k−1

and the true state. In the unscented version of EnKF [39], the singular value decom-
position is used to find the symmetric positive definite square root S+

k−1 of the matrix

P+
k−1, allowing us to form an ensemble of E state vectors, where the ith ensemble

member is denoted x+i,k−1. The ensemble vectors x+i,k−1 are formed by adding and

subtracting the columns of S+
k−1 to the estimate x+k−1 to produce an ensemble with

mean x+k−1 and covariance P+
k−1 [4,5,39]. In other words, the ensemble statistics match

the current filter estimates of the mean and covariance. The ensemble can also be
rescaled by introducing weights for each ensemble member as described in [4,5]. Use
of the unscented transformation results in an ensemble of 2n+ 1 state vectors.

The model f is applied to the ensemble, advancing it one time step, and then
observed with function g. The mean of the resulting state ensemble gives the prior
state estimate x−k and the mean of the observed ensemble is the predicted obser-

vation y−k . Denoting the covariance matrices P−k and P yk of the resulting state
and observed ensemble, and the cross-covariance matrix P xyk between the state and
observed ensembles, we define

P−k =
1

E

E∑
i=1

(
x−ik − x−k

) (
x−ik − x−k

)T
+Q

P yk =
1

E

E∑
i=1

(
y−ik − y−k

) (
y−ik − y−k

)T
+R

P xyk =
1

E

E∑
i=1

(
x−ik − x−k

) (
y−ik − y−k

)T
. (2)

Given the observation yk, the equations

Kk = P xyk (P yk )−1

P+
k = P−k − P xyk (P yk )−1P yxk

x+k = x−k +Kk

(
yk − y−k

)
(3)

update the state and covariance estimates. We will refer to this as the parametric
filter, since a full set of model equations are assumed to be known. The matrices Q
and R are parameters which represent the covariance matrices of the system noise and
the observation noise respectively. Often the true statistics of these noise processes
are unknown, and examples in [40] have shown that accurate estimates of Q and R
are crucial to obtaining a good estimate of the state. In Section 4, we describe an
algorithm developed in [40] for adaptive estimation of Q and R which was developed
for the case when the dynamical model f and observation function g are known.

Contrary to (1), our assumption in this article is that neither the model f nor
observation function g are known, making outright implementation of the EnKF
impossible. Instead, the filter described here does not require a model while still
leveraging the Kalman update described in (3). The idea is to replace the system
evolution, traditionally done through application of f , with advancement of dynamics
nonparametrically using delay-coordinate vectors. We describe this method with the
assumption that a single variable is observable, say y, but the algorithm can be
easily generalized to multiple system observables. In addition, we will assume in our
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examples that noise covariances Q and R are unknown and will be updated adaptively
as in [40].

The idea behind Takens’ method is that given the observable yk, the delay-
coordinate vector

xk = [yk, yk−1, . . . , yk−d]

accurately captures the state of the dynamical system, where d is the number of
delays. In the case where the noise variables are removed from (1), the vector xk
provably represents the state of the system for d+ 1 > 2n as shown in [15,17] (note
that the embedding dimension is d+ 1 since d delays are added to the original state).
An extension of this result to the stochastic system (1) can be found in [44]. Current
applications of Takens delay-coordinate reconstruction have been restricted to fore-
casting; typically by finding historical delay-coordinate states which are close to the
current delay-coordinate state and interpolating these historical trajectories. A sig-
nificant challenge in this method is finding ‘good’ neighbors, which accurately mirror
the current state, especially in real applications when both the current and historical
states are corrupted by observational noise. The goal of the Kalman-Takens filter is
to quantify the uncertainty in the state and reduce the noise using the Kalman filter.

In order to integrate the Takens reconstruction into the Kalman filter, at each step
of the filter an ensemble of delay vectors is formed. The advancement of this ensemble
forward in time requires a nonparametric technique to serve as a local proxy f̃ for the
unknown model f . Given a specific delay coordinate vector xk = [yk, yk−1, . . . , yk−d],
we locate its N nearest neighbors (with respect to Euclidean distance) xi1 , . . . , xiN
where

xij = [yij , yij−1, . . . , yij−d]

are found from the noisy training data. Once the neighbors are found, the known
one step forecast values yi1+1, yi2+1, . . . , yiN+1 are used with a local model to predict
yk+1. In this article, we use a locally constant model which in its most basic form is
an average of the nearest neighbors, namely

f̃(xk) =

[
yi1+1 + yi2+1 + . . .+ yiN+1

N
, yk, . . . , yk−d+1

]
. (4)

This process is repeated to compute the one step forecast f̃ applied to each member
of the ensemble. Once the full ensemble has been advanced forward in time by f̃ , the
remaining EnKF algorithm is then applied using equation (2) as described above,
and the delay-coordinate state vector is updated according to (3). This method was
called the Kalman-Takens filter in [36].

The prediction (4) can be further refined by considering a weighted average of the
nearest neighbors. Throughout the following examples, the weight for neighbor xij
was defined as

wij =
e
−d2ij /σ

2∑N
j=1 e

−d2ij /σ
2

where dij is the distance of xij to the current delay-coordinate vector and σ is a band-
width parameter which controls the contribution of each neighbor in the local model.
In our results, we set the bandwidth σ = 2 and use 20 neighbors. We found these
parameter settings to be adequate for filtering the data in our examples, although the
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Fig. 1. Filtering comparison of the Lorenz-63 x variable when the system is affected by
Gaussian dynamic noise with total variance of 2.4 (black solid line). Observations (green
circles) of the stochastic signal perturbed by Gaussian observational noise with variance of
20 (signal RMSE of 4.49). (a) Parametric filter reconstruction (solid blue line) results in an
RMSE of 2.34. (b) Kalman-Takens filter with d = 2 delays (solid red curve) results in RMSE
of 2.95.

results do not change significantly for similar settings. In general, the bandwidth σ
could be chosen to be the mean distance to the kth nearest neighbor for some k < N .

3 Filtering in the presence of dynamic noise

It was demonstrated in [36] that the Kalman-Takens filter has significant power to
reduce observational noise, but no attempt was made to evaluate its effectiveness
to handle more general noise. In fact, there is reason to doubt its potential against
dynamic noise, due to the fact that as the delay time increases, the fidelity of near
neighbors to the current delay coordinate vector may be compromised. In this sec-
tion, we investigate whether this filter can successfully reconstruct the state under
observational and dynamic noise.

A relevant example is an SDE based on the Lorenz-63 system [41]

ẋ = σ(y − x) + ξẆx

ẏ = x(ρ− z) − y + ξẆy

ż = xy − βz + ξẆz (5)

where σ = 10, ρ = 28, β = 8/3 and Ẇ is white noise with unit variance. Assume we
have a noisy set of training data points

y(tk) = x(tk) + ηk

where k = 1, 2, . . . ,M and yk = y(tk) is a direct observation of the x variable cor-
rupted by independent Gaussian perturbations ηk with mean zero and variance Ro.
Using this data, we want to develop a nonparametric forecasting method to predict
future x values of the system. However, due to the presence of the noise ηk, outright
application of a prediction method leads to inaccurate forecasts.

If knowledge of (5) were available, the standard parametric filter could be used
to assimilate the noisy x observations to the model, generate a denoised estimate of
the x variable, and simultaneously estimate the unobserved y and z variables. This
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Fig. 2. Filtering comparison of the Lorenz-63 x variable when the system is affected by
Gaussian dynamical noise with total variance of 15 (black solid line). Observations (green
circles) of the stochastic signal perturbed by Gaussian observational noise with variance of
20 (signal RMSE of 4.49). (a) Parametric filter reconstruction (solid blue line) results in an
RMSE of 3.21. (b) Kalman-Takens filter with d = 2 delays (solid red curve) results in RMSE
of 3.29.

denoised state estimate could then be forecast forward in time using (5), and we refer
to this process and the parametric forecast.

In contrast, the Kalman-Takens method assumes no knowledge of the underlying
dynamics (5) or even the observation function. Instead, the Kalman-Takens method
works directly with the noise observations yk and defines a proxy for the under-
lying state by the delay vector [yk, yk−1, . . . , yk−d]. By applying the Kalman-Takens
method to the entire training data set, we reduce the observation noise in the training
data which will improve future filtering and also provide better neighbors to improve
forecasting.

Figure 1 shows a comparison of ensemble Kalman filtering with and without the
model. Figure 1a shows the standard parametric EnKF applied to the x-coordinate
of the Lorenz SDE (5) with system noise variance ξ2 = 0.8 (the total variance of
the system noise is 2.4 since there are three independent noise variables), and obser-
vational noise variance Ro = 20. Figure 1b shows the Kalman-Takens filter applied
to the same data. Compared to the SDE solution x(tk) without observational noise
(black curve), the parametric filter fits slightly better, but the Kalman-Takens filter
does almost as well without knowing the model equations. A training set of M = 8000
points were used. Figure 2 shows the same comparison with a higher level of system
noise ξ2 = 5 (total system noise variance is 15).

4 Adaptive estimation of Q and R

A persistent problem in time series analysis is distinguishing system noise from obser-
vational noise. This is a particularly important issue since observational noise distorts
the forecast, and needs to be removed, whereas the system noise affects the future
of the system and thus should not be removed. In other words, the state estimate
that will give the optimal forecast includes the system noise perturbation, but does
not include any of the observation noise perturbations. While obtaining this per-
fect estimate is typically impossible, getting as close as possible requires knowing the
statistics and correlations of the two noise processes. This is captured in the structure
of the Kalman equations (2) and (3) which gives the provably optimal estimate of the
state for linear systems with additive Gaussian system and observation noise. The
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Fig. 3. Adaptive estimation of the filter Q and R matrices. Parametric filter (solid blue
curve), Kalman-Takens with 2 delays (solid red curve), Kalman-Takens with 4 delays (dotted
red curve) (a) System noise estimate Qest (b) Observation noise estimate Rest.

presence of the noise covariance matrices Q and R in the Kalman equations shows
how these parameters determine the optimal estimate.

Since we cannot assume that the noise covariance matrices Q and R are known,
we used a recently-developed method [40] for the adaptive fitting of these matrices
as part of the filtering algorithm. The key difficulty in estimating these covariances
is disambiguating the two noise sources. The method of [40] is based on the fact that
system noise perturbations affect the state at future times, whereas observation noise
perturbations only affect the current time.

The method uses the innovations εk ≡ yk − y−k in observation space from (2) to
update the estimates Qk and Rk of the covariances Q and R, respectively, at step k of
the filter. In order to estimate these two quantities, we will compute two statistics of
the innovations. The first statistic is the outer product εkε

>
k and the second statistic

is the lagged outer product εkε
>
k−1. Intuitively, the first statistic only includes infor-

mation about the observation noise covariance, whereas the second statistic contains
information about the system noise covariance.

We produce empirical estimates Qek−1 and Rek−1 of Q and R based on the
innovations at time k and k − 1 using the formulas

P ek−1 = F−1k−1H
−1
k εkε

T
k−1H

−T
k−1 +Kk−1εk−1ε

T
k−1H

−T
k−1

Qek−1 = P ek−1 − Fk−2P
a
k−2F

T
k−2

Rek−1 = εk−1ε
T
k−1 −Hk−1P

f
k−1H

T
k−1. (6)

It was shown in [40] that P ek−1 is an empirical estimate of the background covariance
at time index k− 1. Notice that (6) requires local linearizations Fk−1 of the dynamics
and Hk−1 of the observation function. While there are many methods of finding these
linearizations, we use the method introduced in [40] and used in [36] which is based
on a linear regression. In particular, to determine Fk−1 a linear regression is applied

between the ensemble before and after the dynamics f̃ are applied. Similarly, to
determine Hk−1 a linear regression is applied between the ensemble before and after
the observation function is applied. Notice that this procedure requires us to save the
linearizations Fk−2, Fk−1, Hk−1, Hk, innovations εk−1, εk, and the analysis P ak−2 and
Kalman gain matrix, Kk−1, from the k − 1 and k − 2 steps of the EnKF.



3246 The European Physical Journal Special Topics

To find stable estimates of Q and R we combine the noisy estimates Qek−1 and
Rek−1 (which are also low-rank by construction) using an exponential moving average

Qk = Qk−1 + (Qek−1 −Qk−1)/τ

Rk = Rk−1 + (Rek−1 −Rk−1)/τ (7)

where τ is the window of the moving average. For further details on the estimation
of Q and R we refer the reader to [36,40].

In Figure 3 we show the final estimates trace(Qest) and Rest from applying the
adaptive filter to the stochastic Lorenz system (5) with various system noise levels 3ξ2

(note that the factor 3 gives the total variance of the three stochastic forcing variables
which is compared to trace(Qest) which is also a total variance). In Figure 3b we show
that all of the filter methods obtain reasonably accurate estimates of the true obser-
vation noise Ro = 20, and the results are very robust to the amount of system noise.
In Figure 3a we first note that the parametric filter with the perfect model obtains
a good estimate (blue, solid curve) of the true system noise (black, dashed curve).
Secondly, we note that the trace of Qest for the Kalman-Takens filters both increase
with increasing system noise, without distorting the estimate of the observation noise
(as shown in Fig. 3b). Notice that the Takens reconstruction corresponds to a highly
nonlinear transformation of the state space, and that even the dimension of the state
space changes. Since this nonlinear transformation may stretch or contract the state
space in a complicated way, it is not particularly surprising that the variance of the
stochastic forcing in the delay-embedding space has a different magnitude than the
original system noise variance. The exact relationship between these two stochastic
forcings is highly nontrivial, and the spatially homogeneous and uncorrelated system
noise of (5) may easily become inhomogeneous and correlated in the reconstructed
dynamics.

5 Filtering dynamical noise

The Kalman-Takens filter was introduced in [36], which considered deterministic
dynamical systems with only observation noise. In section 2, we showed that the
filter is also robust to dynamical noise, and in this section we quantify this fact
for stochastic systems such as (5) that include both system and observation noise.
In Figure 4 we compare the Kalman-Takens filters (red curves) to the parametric
filter (blue curve) as a function of the system noise variance 3ξ2 for various levels
of observation noise. In Figure 4 the observation noise, which is the error between
the observed signal and the true state, is denoted by the black dotted line in each
subfigure. Each filter obtains a dramatic denoising of the observations relative to the
observation noise levels Ro = 5, 20, and 60 in Figures 4a–4c respectively. In each case,
for large observation noise the Kalman-Takens filter performance is comparable to
the parametric filter, and only at very low system noise does the parametric filter
have a slight advantage. This illustrates the robustness that the Kalman-Takens filter
has to model error since it makes no assumption on the form of the model, unlike the
parametric filter which possesses the perfect model.

We also explored the robustness of the Kalman-Takens filter to the number of
delays d used in the Takens delay-embedding. For d = 2 the embedding dimension
is d+ 1 = 3, which is the minimum dimension needed to embed the attractor of the
deterministic Lorenz-63 system. However, the theoretical guarantee of the Takens
embedding theory requires d + 1 > 2n where n is the attractor dimension, which
requires an embedding dimension of d + 1 = 5 (the attractor of the deterministic
Lorenz-63 system is slightly larger than 2). As shown in Figures 4a and 4b the d = 2
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Fig. 4. Reconstructing the noisy Lorenz-63 x variable under increasing levels of dynamical
noise. Observations of stochastic signal perturbed by Gaussian observational noise with
variance (a) 5, (b) 20 and (c) 60 resulting in signal error level (dotted black line). Parametric
filter (solid blue line), Kalman-Takens filter with 2 delays (solid red line) and Kalman-
Takens filter with 4 delays (dotted red line) reconstruction accuracy shown. Error bars
denote standard error over 5 realizations. As the amount of dynamical noise increases, the
Kalman-Takens filter has performance very similar to the parametric filter, which has access
to the full model.

(red, solid curve) and d = 4 (red, dotted curve) have similar performance except
at very low system noise levels, where d = 4 has a slight advantage. Notice that
when very little noise is present, the longer that two trajectories agree, the closer
the corresponding states are, so for small noise, we expect long delays to help find
better neighbors. However, in the presence of system noise, this breaks down. Two
trajectories may be very close in the past but recent stochastic forcing may cause
them to quickly diverge. Moreover, as noise is added, it becomes increasingly difficult
to distinguish states, and adding delays is merely adding more dimensions which
could coincidentally agree without implying the states are similar. This is shown
in Figure 4c where d = 2 outperforms d = 4 in the presence of large observation
noise. Similarly, in all of Figure 4 we note that as the system noise increases, the
value of knowing the true model (5) becomes negligible as the d = 2 Kalman-Takens
performance is indistinguishable from the parametric filter.

Finally, we show in Figure 5 that the Kalman-Takens filter achieves forecast
performance comparable to the perfect model. The Kalman-Takens improves fore-
casting in two ways. First, by running the Kalman-Takens filter on the historical
training data, we significantly reduce the observation noise, which allows for better
analog forecasting. Second, the Kalman-Takens filter gives a good estimate of the cur-
rent state, which leads to an improved forecast. Ultimately, Takens based forecasting
relies on finding good neighbors in delay-embedding space since these neighbors are
interpolated to form the forecast. Finding good neighbors requires both a good esti-
mate of the current state, and historical data with small observation noise; and the
Kalman-Takens filter improves both of these.

As a baseline, we used the unfiltered delay-embedding and found neighbors in the
raw delay-embedded historical data, and the RMSE of this forecast method is shown
in Figure 5 (black solid curve) as a function of the forecast horizon. The time zero
forecast is simply the initial estimate, and for the black solid curve the RMSE at
time zero corresponds to the observation noise level (since the initial state is simply
the unfiltered current observation). The lower RMSE of the filtered estimates (red
and blue curves) at time zero in Figure 5 shows how the filter improves the initial
estimate of the state. Similarly, the long term forecast converges to the average of
the historical training data (since we use an ensemble forecast which are uncorrelated
in the long term). The lower RMSE of the filtered forecasts (red curves) compared
to the raw data (black curve) in Figure 5 shows that denoising the historical data
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Fig. 5. Forecast accuracy when predicting Lorenz-63 from 8000 noisy training data. (a)
System influenced by Gaussian dynamical noise with variance of 0.8. (b) System influenced
by Gaussian dynamical noise with variance of 5. Observations perturbed by Gaussian obser-
vational noise with variance of 20. Prediction results shown when the training data are
not filtered (solid black curve), filtered by the parametric filter (solid blue curve), Kalman-
Takens filter with 2 delays (solid red curve) and Kalman-Takens filter with 4 delays (dotted
red curve) is used. Results averaged over 1000 realizations.

gives an improved estimate of the long term statistics of the SDE. Moreover, since
the red curves are very close to the blue curve in Figure 5 we conclude that the
Kalman-Takens is able to improve the historical data and estimate the current state
with sufficient accuracy to match the parametric filter and forecast using the perfect
model.

6 Summary

Traditional data assimilation is predicated on the existence of an accurate model for
the dynamics. In this article, we have shown that the Kalman-Takens filter provides
an alternative for stochastic dynamical systems when no model is available. In this
approach, the usual role of a fully parametrized model in linear and nonlinear Kalman
filtering algorithms is subsumed by a Takens delay-coordinate reconstruction of the
dynamics.

Although it might be expected that dynamical noise would be an obstruction
to the delay-coordinate embedding that is necessary to reconstruct the attractor,
we find by numerical experiment that filtering and forecasting applications are not
hampered significantly more than for the parametric filter. In fact, for the stochastic
Lorenz attractor, we show that prediction accuracy with Kalman-Takens filtering can
approximately match parametric results.

This report is a feasibility study, and leaves open several interesting questions
about how to optimally apply the algorithm. In particular, the role of the number of
delays, neighborhood size, as well as their relation to the EnKF parameters are still
not well understood, and are deserving of further investigation.

This research was partially supported by NSF grants DMS-1250936, DMS-1723175 and
DMS-1246991.
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