Convergence of rank-type equations

Timothy Sauer
Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA

A R T I C L E I N F O

Keywords:

Difference equations
Convergence
Rank-type

Abstract

Convergence results are presented for rank-type difference equations, whose evolution rule is defined at each step as the k th largest of p univariate difference equations. If the univariate equations are individually contractive, then the equation converges to a fixed point equal to the k th largest of the individual fixed points of the univariate equations. Examples are max-type equations for $k=1$, and the median of an odd number p of equations, for $k=(p+1) / 2$. In the non-hyperbolic case, conjectures are stated about the eventual periodicity of the equations, generalizing long-standing conjectures of G. Ladas.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

For a set of p real numbers $\left\{r_{1}, \ldots, r_{p}\right\}$, denote the k th-largest element of the set by k-rank $\left\{r_{1}, \ldots, r_{p}\right\}$. Thus $2-\operatorname{rank}\{6,2,5,3\}=5$, and 1 -rank is synonymous with max.

Let $f_{i}: R \rightarrow R$ for $i=1, \ldots, p$ be real-valued functions. Consider the difference equation

$$
\begin{equation*}
x_{n}=k-\operatorname{rank}\left\{f_{1}\left(x_{n-1}\right), f_{2}\left(x_{n-2}\right), \ldots, f_{p}\left(x_{n-p}\right)\right\} \tag{1}
\end{equation*}
$$

for initial data x_{1}, \ldots, x_{p}. We will call such an equation a rank-type difference equation. If the f_{i} are continuous, then x_{n} is a continuous function of x_{n-1}, \ldots, x_{n-p}. Special cases of rank-type equations include

$$
\begin{align*}
& x_{n}=\max \left\{f_{1}\left(x_{n-1}\right), f_{2}\left(x_{n-2}\right), \ldots, f_{p}\left(x_{n-p}\right)\right\}, \tag{2}\\
& x_{n}=\min \left\{f_{1}\left(x_{n-1}\right), f_{2}\left(x_{n-2}\right), \ldots, f_{p}\left(x_{n-p}\right)\right\} \tag{3}
\end{align*}
$$

and

$$
\begin{equation*}
x_{n}=\operatorname{median}\left\{f_{1}\left(x_{n-1}\right), f_{2}\left(x_{n-2}\right), \ldots, f_{p}\left(x_{n-p}\right)\right\} \tag{4}
\end{equation*}
$$

in the case where p is odd.
Max-type equations, corresponding to the special case $k=1$ in difference Eq. (1), have been extensively studied [1-$9,14,13,17-21]$. The purpose of this article is to note that, perhaps surprisingly, many of the properties of max-type equations are shared more generally by rank-type equations for $k>1$.

Definition. The function f is called contractive if there exists $0 \leqslant \alpha<1$ and a real number r such that $|f(x)-r| \leqslant \alpha|x-r|$ for all x.

Definition. The solution $\left\{x_{n}\right\}_{n=1}^{\infty}$ of a difference equation is called globally convergent if there exists r such that for every set of initial values, $\lim _{n \rightarrow \infty} x_{n}=r$. In this case, the equilibrium r is called globally attractive.

[^0]In the next section we show that if the f_{i} are contractive with fixed points r_{i}, then the difference Eq. (1) is globally convergent for any set $\left\{x_{1}, \ldots, x_{p}\right\}$ of initial values, converging in the limit to the fixed point k-rank $\left\{r_{1}, \ldots, r_{p}\right\}$.

This result is a generalization of the convergence theorem for max-type equations, the $k=1$ case [11]. If p is odd and $k=(p+1) / 2$, then the convergence result corresponds to replacing max by median. The corresponding statement for mean is false; see Example 2.6.

Theorem 2.3 below is the main global convergence result, proved in a context slightly more general than (1). The techniques used to prove Theorem 2.3 can also be applied to prove a local convergence version, Theorem 3.1. In the final section, we relax the hyperbolicity restriction and state some conjectures, generalizing well-known conjectures of Ladas [9] and Grove and Ladas [7] on max-type equations.

2. Global convergence

In this section, we prove the main convergence result for rank-type maps after two preliminary lemmas.
Lemma 2.1. Let p be a positive integer, r and $0 \leqslant \alpha<1$ real numbers, and let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers. Assume that for each n there exists i, possibly depending on $n, 1 \leqslant i \leqslant p$, such that $\left|x_{n}-r\right| \leqslant \alpha\left|x_{n-i}-r\right|$. Then $\lim _{n \rightarrow \infty} x_{n}=r$.

The proof of Lemma 2.1 can be found in [12] as well as [11]. The next lemma generalizes Lemma 2.2 of [11].
Lemma 2.2. Let $u_{1}, u_{2}, y_{1} \leqslant y_{2}$, and $s_{2} \leqslant r \leqslant s_{1}$ be real numbers, and assume $\left|y_{i}-s_{i}\right| \leqslant \alpha\left|u_{i}-s_{i}\right|$ for $i=1,2$ for some $0 \leqslant \alpha<1$. Then
(i) $\left|y_{2}-r\right| \leqslant \alpha\left|u_{j}-r\right|$ for either $j=1$ or $j=2$, and
(ii) $\left|y_{1}-r\right| \leqslant \alpha\left|u_{j}-r\right|$ for either $j=1$ or $j=2$.

Proof. We give the proof of (i). The proof of (ii) follows by applying (i) to $-u_{1},-u_{2},-y_{2},-y_{1},-s_{1},-r,-s_{2}$. The proof of (i) is divided into four cases.

Case 1: $y_{2} \leqslant r, u_{1} \geqslant s_{1}$. In this case,

$$
\left|y_{2}-r\right|=r-y_{2} \leqslant s_{1}-y_{2} \leqslant s_{1}-y_{1}=\left|s_{1}-y_{1}\right| \leqslant \alpha\left|s_{1}-u_{1}\right|=\alpha\left(u_{1}-s_{1}\right) \leqslant \alpha\left(u_{1}-r\right)=\alpha\left|u_{1}-r\right|
$$

Case 2: $y_{2} \leqslant r, u_{1} \leqslant s_{1}$.

$$
\begin{aligned}
\left|y_{2}-r\right| & =r-y_{2} \leqslant r-y_{1}=r-s_{1}+s_{1}-y_{1}=r-s_{1}+\left|y_{1}-s_{1}\right| \leqslant r-s_{1}+\alpha\left|u_{1}-s_{1}\right|=r-s_{1}+\alpha\left(s_{1}-u_{1}\right) \\
& \leqslant r-s_{1}+\alpha\left(s_{1}-u_{1}\right)+(1-\alpha)\left(s_{1}-r\right)=\alpha\left(r-u_{1}\right) \leqslant \alpha\left|r-u_{1}\right| .
\end{aligned}
$$

Case 3: $y_{2} \geqslant r, u_{2} \geqslant r$.

$$
\begin{aligned}
\left|y_{2}-r\right| & =y_{2}-r=y_{2}-s_{2}+s_{2}-r=\left|y_{2}-s_{2}\right|+s_{2}-r \leqslant \alpha\left|u_{2}-s_{2}\right|+s_{2}-r=\alpha\left(u_{2}-s_{2}\right)+s_{2}-r \\
& \leqslant \alpha\left(u_{2}-s_{2}\right)+s_{2}-r+(1-\alpha)\left(r-s_{2}\right)=\alpha\left(u_{2}-r\right)=\alpha\left|u_{2}-r\right| .
\end{aligned}
$$

Case 4: $y_{2} \geqslant r, u_{2} \leqslant r$.
If $u_{2} \geqslant s_{2}$, then

$$
r-s_{2} \leqslant y_{2}-s_{2}=\left|y_{2}-s_{2}\right| \leqslant \alpha\left|u_{2}-s_{2}\right|=\alpha\left(u_{2}-s_{2}\right) \leqslant \alpha\left(r-s_{2}\right),
$$

a contradiction. So in addition, we may assume $u_{2}<s_{2} \leqslant r$. Then

$$
\left|y_{2}-r\right|=y_{2}-r \leqslant y_{2}-s_{2}=\left|y_{2}-s_{2}\right| \leqslant \alpha\left|u_{2}-s_{2}\right|=\alpha\left(s_{2}-u_{2}\right) \leqslant \alpha\left(r-u_{2}\right)=\alpha\left|u_{2}-r\right|,
$$

which completes the proof.

Theorem 2.3. Consider p nonnegative integers q_{1}, \ldots, q_{p}, and let $0 \leqslant \alpha<1$. Assume for each i, j satisfying $1 \leqslant i \leqslant p, 1 \leqslant j \leqslant q_{i}$ there exists a function $f_{i j}: R \rightarrow R$ and a real number $r_{i j}$ satisfying

$$
\left|f_{i j}(x)-r_{i j}\right| \leqslant \alpha\left|x-r_{i j}\right|
$$

for all x. Then for any k and for any set $\left\{x_{1}, \ldots, x_{p}\right\}$ of initial values, the solution of the difference equation

$$
\begin{equation*}
x_{n}=k-\operatorname{rank}_{1 \leqslant i \leqslant p, 1 \leqslant j \leqslant q_{i}}\left\{f_{i j}\left(x_{n-i}\right)\right\} \tag{5}
\end{equation*}
$$

converges to k-rank $k_{1 \leqslant i \leqslant p, 1 \leqslant \leqslant \leqslant q_{i}} r_{i j}$, the kth-largest of the $r_{i j}$.
Proof. There are $q \equiv \sum_{i=1}^{p} q_{j}$ functions $f_{i j}$, each with fixed point $r_{i j}$. Rank the q fixed points as follows:

$$
r_{i_{1} j_{1}} \geqslant r_{i, j_{2}} \geqslant \cdots \geqslant r_{i, j_{q}} .
$$

We need to prove that the sequence $x_{n}=k-\operatorname{rank}\left\{f_{i j}\left(x_{n-i}\right)\right\}$ converges to $r \equiv r_{i_{k j}}=k$-rank $r_{i j}$.
For a fixed n, define i_{m}, j_{m} so that $x_{n} \equiv k-\operatorname{rank}_{i, j}\left\{f_{i j}\left(x_{n-i}\right)\right\}=f_{i_{m} j_{m}}\left(x_{n-i_{m}}\right)$. To apply Lemma 2.1, we will find x_{n-i} satisfying $\left|x_{n}-r\right| \leqslant \alpha\left|x_{n-i}-r\right|$ where $1 \leqslant i \leqslant p$.

If $m=k$, then $\left|x_{n}-r\right| \leqslant \alpha\left|x_{n-i_{k}}-r\right|$, as required. If $m<k$, then there exists an integer $h \in\{k, k+1, \ldots, q\}$ such that $f_{i_{i j} j_{h}}\left(x_{n-i_{h}}\right) \geqslant f_{i_{m} j_{m}}\left(x_{n-i_{m}}\right)$. Thus $m<k \leqslant h$, or in other words, $r_{i_{m} j_{m}} \geqslant r_{i_{k j} j_{k}} \geqslant r_{i_{h} j_{h}}$. Now we can apply Lemma 2.2 with $s_{2}=r_{i_{h} j_{h}} \leqslant$ $r=r_{i_{k} j_{k}} \leqslant s_{1}=r_{i_{m} j_{m}}, y_{1}=f_{i_{m} j_{m}}\left(x_{n-i_{m}}\right) \leqslant y_{2}=f_{i_{h} j_{n}}\left(x_{n-i_{n}}\right)$, and $u_{1}=x_{n-i_{m}}, u_{2}=x_{n-i_{h}}$. The result of part (ii) of the lemma is that

$$
\begin{equation*}
\left|x_{n}-r\right|=\left|k-\operatorname{rank}_{1 \leqslant i \leqslant p, 1 \leqslant j \leqslant q_{i}}\left\{f_{i j}\left(x_{n-i}\right)\right\}-r\right| \leqslant \alpha|z-r|, \tag{6}
\end{equation*}
$$

where $z=x_{n-i_{m}}$ or $x_{n-i_{n}}$, as required. Finally, if $m>k$, there exists $h \in\{1,2, \ldots, k\}$ such that $f_{i_{h} j_{n}}\left(x_{n-i_{n}}\right) \leqslant f_{i_{m j} j_{m}}\left(x_{n-i_{m}}\right)$. Thus $h \leqslant k<m$, or in other words, $r_{i_{h} j_{h}} \geqslant r_{i_{k} j_{k}} \geqslant r_{i_{m j_{m}}}$. Part (i) of Lemma 2.2 with $s_{2}=r_{i_{m} j_{m}} \leqslant r=r_{i_{k} j_{k}} \leqslant s_{1}=r_{i j_{h} j_{h}}, y_{1}=$ $f_{i_{n} j_{n}}\left(x_{n-i_{n}}\right) \leqslant y_{2}=f_{i_{m} j_{m}}\left(x_{n-i_{m}}\right)$, and $u_{1}=x_{n-i_{n}}, u_{2}=x_{n-i_{m}}$ yields (6) as before.

This satisfies the hypotheses of Lemma 2.1, so

$$
\lim _{n \rightarrow \infty} x_{n}=r=k \text {-rank }\left\{r_{i j}\right\} .
$$

Setting all $q_{i}=1$ in Theorem 2.3 covers the special case referred to as Eq. (1) in the introduction.

Corollary 2.4. Let r_{1}, \ldots, r_{p} be real numbers and assume $f_{i}: R \rightarrow R$ for $i=1, \ldots, p$ satisfy $\left|f_{i}(x)-r_{i}\right| \leqslant \alpha\left|x-r_{i}\right|$ for all x, where $0 \leqslant \alpha<1$. Then for any set $\left\{x_{1}, \ldots, x_{p}\right\}$ of initial values, the solution of difference equation

$$
\begin{equation*}
x_{n}=k-\operatorname{rank}\left\{f_{1}\left(x_{n-1}\right), \ldots, f_{p}\left(x_{n-p}\right)\right\} \tag{7}
\end{equation*}
$$

converges to k-rank $\left\{r_{1}, \ldots, r_{p}\right\}$ as $n \rightarrow \infty$.

Example 2.5. As an application of Corollary 2.4, consider the difference equation

$$
\begin{equation*}
x_{n}=k-\operatorname{rank}\left\{\frac{1}{a_{1}+b_{1} x_{n-1}^{2}}, \ldots, \frac{1}{a_{p}+b_{p} x_{n-p}^{2}}\right\} \tag{8}
\end{equation*}
$$

where $0<a_{i}, 0 \leqslant b_{i}<\left(4 a_{i} / 3\right)^{3}$ for $i=1, \ldots, p$. Under these conditions, for each i, the first derivative of $f_{i}(x)=1 /\left(a_{i}+b_{i} x^{2}\right)$ is smaller than 1 in absolute value for all x. By the Mean Value Theorem, the hypotheses of Corollary 2.4 hold where r_{i} denotes the real root of the equation $b_{i} x^{3}+a_{i} x=1$. Therefore all solutions of (8) must converge to k-rank $\left\{r_{1}, \ldots, r_{p}\right\}$.

A particular case of (8) for $k=2$ is the difference equation

$$
\begin{equation*}
x_{n}=\operatorname{median}\left\{\frac{1}{1.2+0.7 x_{n-1}^{2}}, \frac{1}{1+x_{n-2}^{2}}, \frac{1}{1.1+0.9 x_{n-3}^{2}}\right\} \tag{9}
\end{equation*}
$$

The fixed points of

$$
f_{1}(x)=\frac{1}{1.2+0.7 x^{2}}, \quad f_{2}(x)=\frac{1}{1+x^{2}}, \quad f_{3}(x)=\frac{1}{1.1+0.9 x^{2}}
$$

are approximately $r_{1}=0.6632, r_{2}=0.6823$, and exactly $r_{3}=2 / 3$, respectively. Corollary 2.4 implies that all solutions of (9) converge to $r_{3}=2 / 3$, the median of the three fixed points.

Remark. Corollary 2.4 implies that if p is odd, then the median difference Eq. (4) converges to the median of the individual fixed points of f_{1}, \ldots, f_{p}. However, if p is even, and we follow the usual convention that the median refers to the average of the two middle ranked entries, this statement fails to hold, as shown in the next example.

Example 2.6. If $a_{1}+a_{2}<2$ for positive numbers a_{1}, a_{2}, the equation

$$
\begin{equation*}
x_{n}=\operatorname{median}\left\{a_{1} x_{n-1}+b_{1}, a_{2} x_{n-2}+b_{2}\right\} \tag{10}
\end{equation*}
$$

is equivalent to

$$
x_{n}=\operatorname{mean}\left\{a_{1} x_{n-1}+b_{1}, a_{2} x_{n-2}+b_{2}\right\}
$$

and converges to the fixed point

$$
\lim _{n \rightarrow \infty} x_{n}=\left(b_{1}+b_{2}\right) /\left(2-a_{1}-a_{2}\right)
$$

This disagrees in general with the mean of the fixed points of $f_{1}(x)=a_{1} x+b_{1}$ and $f_{2}(x)=a_{2} x+b_{2}$, which is $b_{1} / 2\left(1-a_{1}\right)+$ $b_{2} / 2\left(1-a_{2}\right)$.

Example 2.7. Consider the difference equation

$$
\begin{equation*}
x_{n}=k-\operatorname{rank}\left\{A_{1} x_{n-1}^{\alpha_{1}}, \ldots, A_{p} x_{n-p}^{\alpha_{p}}\right\} \tag{11}
\end{equation*}
$$

where $A_{i}>0,-1<\alpha_{i}<1$ for $i=1, \ldots, p$, and x_{1}, \ldots, x_{p} are initial values. Set $y_{n}=\log x_{n}$. In these coordinates, the i th equation is $y_{n}=\alpha_{i} y_{n-i}+\log A_{i}$, and due to monotonicity of the logarithm, (11) is replaced with

$$
y_{n}=k-\operatorname{rank}\left\{\alpha_{1} y_{n-1}+\log A_{1}, \ldots, \alpha_{p} y_{n-p}+\log A_{p}\right\}
$$

Corollary 2.4 shows that for any set of positive initial values x_{1}, \ldots, x_{p}, the y_{n} sequence converges to k-rank $\left\{\log A_{i} /\left(1-\alpha_{i}\right)\right\}$, so that

$$
\lim _{n \rightarrow \infty} x_{n}=k-\operatorname{rank}_{1 \leqslant i \leqslant p} A_{i}^{\frac{1}{1-\alpha_{i}}}
$$

This proves asymptotic convergence of (11) for $-1<\alpha_{i}<1, A_{i}>0$, and for all positive initial conditions. The max-type version of the problem, corresponding to $k=1$, was previously treated in [11,14-17].

3. Local convergence

Definition. The constant solution $x_{n}=r$ of a difference equation will be called locally attractive if for some p-dimensional open neighborhood of initial values $\left(x_{1}, \ldots, x_{p}\right)=(r, \ldots, r)$, the solution converges to the constant solution r.

This definition concerns local convergence, for cases when nearby initial values are attracted to a given constant solution. In the context of rank-type equations, in order to make conclusions about local convergence, an extra hypothesis that is not strictly local needs to be added to control the contractivity between the individual fixed points, as shown in the next theorem.

Theorem 3.1. Consider p nonnegative integers q_{1}, \ldots, q_{p}, and let $0 \leqslant \alpha<1$. Assume for each i, j satisfying $1 \leqslant i \leqslant p, 1 \leqslant j \leqslant q_{i}$ there exists a continuously differentiable function $f_{i j}: R \rightarrow R$ and a real number $r_{i j}$ satisfying $f_{i j}\left(r_{i j}\right)=r_{i j}$. Let i_{k}, j_{k} be integers satisfying $r_{i, j_{k}}=k-$ rank $_{i, j} r_{i j}$. Assume that for each $i, j,\left|f_{i j}^{\prime}(x)\right| \leqslant \alpha$ for x between $r_{i j}$ and $r_{i, j_{k}}$. Then the constant solution $x_{n}=r_{i, j_{k}}$ of the ranktype difference equation

$$
\begin{equation*}
x_{n}=k-r a n k_{1 \leqslant i \leqslant p, 1 \leqslant j \leqslant q_{i}}\left\{f_{i j}\left(x_{n-i}\right)\right\} \tag{12}
\end{equation*}
$$

is locally attractive.
Proof. Choose $\epsilon>0$ such that for each $i, j,\left|f_{i j}^{\prime}(x)\right| \leqslant \alpha_{1} \equiv(\alpha+1) / 2<1$ for $r_{i j}-\epsilon<x<r_{i, j_{k}}+\epsilon$. For each i, j and $r_{i j}-\epsilon<x<$ $r_{i j_{k}}+\epsilon$, the Mean Value Theorem implies $\left|f_{i j}(x)-r_{i j}\right| \leqslant \alpha_{1}\left|x-r_{i j}\right|$. Define the open set $U=\left\{\left(x_{1}, \ldots, x_{p}\right):\left|x_{i}-r_{i_{k j} j_{k}}\right|<\epsilon, 1 \leqslant\right.$ $i \leqslant p\}$.

The remainder of the proof is similar to the proof of Theorem 2.3. Choose (x_{1}, \ldots, x_{p}) from U, and for each $n>p$, choose i^{\prime}, j^{\prime} such that $x_{n}=\max _{i, j}\left\{f_{i j}\left(x_{n-i}\right)\right\}=f_{i^{\prime} j^{\prime}}\left(x_{n-i^{\prime}}\right)$. Apply Lemma 2.2 with $u_{1}=x_{n-i_{k}}, y_{1}=f_{i_{k} j_{k}}\left(x_{n-i_{k}}\right), u_{2}=x_{n-i^{\prime}}, y_{2}=f_{i^{\prime} j^{\prime}}\left(x_{n-i^{\prime}}\right), s_{1}=$ $r_{i j_{k},}$, and $s_{2}=r_{i^{\prime} j^{\prime}}$. Lemma 2.2 implies that

$$
\left|x_{n}-r_{i_{k} j_{k}}\right|=\left|\max _{i, j}\left\{f_{i j}\left(x_{n-i}\right)\right\}-r_{i_{k j} j_{k}}\right| \leqslant \alpha_{1}\left|z-r_{i_{m} j_{m}}\right|
$$

where $z=x_{n-i_{k}}$ or $x_{n-i^{\prime}}$. This implies that (a) x_{n} belongs to U and (b) we can apply Lemma 2.1 to conclude that $\lim _{n \rightarrow \infty} X_{n}=r_{i, j_{k}}$.

The $q_{i} \equiv 1$ special case is the local version of Corollary 2.4.
Corollary 3.2. Assume that the continuously differentiable functions $f_{i}: R \rightarrow R$ and real numbers r_{i} for $i=1, \ldots, p$ satisfy $f_{i}\left(r_{i}\right)=r_{i}$. Let i_{k} be an integer satisfying $r_{i_{k}}=k$-rank $k_{1 \leqslant i \leqslant p} r_{i}$, and assume that there exists $0 \leqslant \alpha<1$ such that for $1 \leqslant i \leqslant p,\left|f_{i}^{\prime}(x)\right| \leqslant \alpha$ for x between r_{i} and $r_{i_{k}}$. Then the constant solution $x_{n}=r_{i_{k}}$ of the difference equation

$$
\begin{equation*}
x_{n}=k-\operatorname{rank}\left\{f_{1}\left(x_{n-1}\right), \ldots, f_{p}\left(x_{n-p}\right)\right\} \tag{13}
\end{equation*}
$$

is locally attractive.
We revisit two examples of max-type equations from [11], and discuss them in the more general context of Corollary 3.2.
Example 3.3. As a first example, consider the rank-type equation involving Ricker maps [10]

$$
\begin{equation*}
x_{n}=k-\operatorname{rank}\left\{x_{n-1} e^{a_{1}\left(1-x_{n-1} / c_{1}\right)}, \ldots, x_{n-p} e^{a_{p}\left(1-x_{n-p} / c_{p}\right)}\right\} \tag{14}
\end{equation*}
$$

where each $\operatorname{map} f_{i}(x)=x e^{a_{i}\left(1-x / c_{i}\right)}$ in (13) has growth parameter $a_{i} \geqslant 0$ and carrying capacity $c_{i} \geqslant 0$. Since $f_{i}^{\prime}(0)=e^{a_{i}} \geqslant 1, f_{i}$ is not contractive, and the hypotheses of Corollary 2.4 are not satisfied.

However, note that if $0<a_{i}<2$, then c_{i} is a stable fixed point for f_{i}, since the derivative of $f_{i}(x)=x e^{a_{i}\left(1-x / c_{i}\right)}$ is $f_{i}^{\prime}(x)=\left(1-a_{i} x / c_{i}\right) e^{a_{i}\left(1-x / c_{i}\right)}$, and $\left|f_{i}^{\prime}\left(c_{i}\right)\right|=\left|1-a_{i}\right|<1$. In addition, the second derivative shows that $f_{i}^{\prime}(x)$ is decreasing on the interval $\left[c_{i}, 2 c_{i} / a_{i}\right)$ from $f_{i}^{\prime}\left(c_{i}\right)=1-a_{i}$ to $f_{i}^{\prime}\left(2 c_{i} / a_{i}\right)=-e^{a_{i}-2}$, and increasing on the interval $\left(2 c_{i} / a_{i}, \infty\right)$ from $f_{i}^{\prime}\left(2 c_{i} / a_{i}\right)=-e^{a_{i}-2}$ to 0. It follows immediately that $\left|f_{i}^{\prime}(x)\right| \leqslant \max \left\{\left|1-a_{i}\right|, e^{a_{i}-2}\right\}<1$ for $c_{i} \leqslant x$. Now the main hypothesis of Corollary 3.2, that for
each $i,\left|f_{i}^{\prime}(x)\right|=\left|\left(1-a_{i} x / c_{i}\right) e^{a_{i}\left(1-x / c_{i}\right)}\right| \leqslant \alpha \equiv \max _{i}\left\{\left|1-a_{i}\right|, e^{a_{i}-2}\right\}<1$ for x between c_{i} and $c_{i_{k}}$, is verified. Therefore the constant solution $\left\{c_{i_{k}}, c_{i_{k}}, \ldots\right\}$ is locally attractive for the rank-type Eq. (14), where $c_{i_{k}}=k$-rank $\left\{c_{i}\right\}$ is the k th-largest of the carrying capacities of the p individual Ricker maps.

Example 3.4. Assume $-1 / 4<a_{i}<3 / 4$ for $1 \leqslant i \leqslant p$. Then the fixed point $r_{i}=a_{i}+\frac{1}{2}-\sqrt{a_{i}+\frac{1}{4}}$ of $f_{i}(x)=\left(x-a_{i}\right)^{2}$ is an attracting fixed point. Note that each fixed point lies in the interval $\left[0, \frac{1}{4}\right)$.

We can apply Corollary 3.2 to the difference equation

$$
\begin{equation*}
x_{n}=k-\operatorname{rank}\left\{\left(x_{n-1}-a_{1}\right)^{2},\left(x_{n-2}-a_{2}\right)^{2}, \ldots,\left(x_{n-p}-a_{p}\right)^{2}\right\} . \tag{15}
\end{equation*}
$$

Note that for each j and for x between $x=r_{i}$ and $x=\frac{1}{4}, f_{i}^{\prime}(x)$ is increasing from $f_{i}^{\prime}\left(r_{i}\right)=1-\sqrt{4 a_{i}+1}$ to $f_{i}^{\prime}\left(\frac{1}{4}\right)=2\left(\frac{1}{4}-a_{i}\right)$, so that $\left|f_{i}^{\prime}(x)\right| \leqslant \max \left\{\left|1-\sqrt{4 a_{i}+1}\right|,\left|2\left(\frac{1}{4}-a_{i}\right)\right|\right\}<1$, satisfying the main hypothesis of Corollary 3.2. It follows that the constant solution $x_{n}=r_{i_{k}}$, the k th-largest of the p individually attracting fixed points of the f_{i}, is locally attractive for the rank-type Eq. (15).

4. Non-hyperbolic case

Far less is known in the non-hyperbolic case, where the restriction that $\alpha<1$ is relaxed. Because of the lack of hyperbolicity, convergence cannot be expected for general initial conditions. In many cases the solution becomes periodic for sufficiently large n. A particularly rich case concerns the difference equation

$$
\begin{equation*}
x_{n}=k-\operatorname{rank}\left\{-x_{n-1}+b_{1}, \ldots,-x_{n-p}+b_{p}\right\} . \tag{16}
\end{equation*}
$$

Remark. First define i_{k} to be the index of the k th-largest b_{i}, namely $b_{i_{k}}=k$-rank $\left\{b_{1}, \ldots, b_{p}\right\}$. Then it is straightforward to check that (16) has a fixed-point solution $x_{1}=x_{2}=\cdots=\frac{1}{2} b_{i_{k}}$.

With more assumptions, many more periodic solutions can be generated. We say that a solution has prime period s if it is periodic with period s and with no lower period.

Proposition 4.1. Assume that the b_{1}, \ldots, b_{p} in (16) are ordered as

$$
b_{i_{1}} \geqslant \cdots \geqslant b_{i_{k-1}}>b_{i_{k}}>b_{i_{k+1}} \geqslant \cdots \geqslant b_{i_{p}}
$$

That is, assume that $b_{i_{k}}$, the kth-largest b_{i}, is not repeated in the list. Then there are uncountably many solutions of (16) with prime period $2 i_{k}$.

The solutions can be described as follows. Define

$$
\beta=\frac{1}{2} \min \left\{b_{i_{k-1}}-b_{i_{k}}, b_{i_{k}}-b_{i_{k+1}}\right\}
$$

(If $k=1$, set $\beta=\frac{1}{2}\left(b_{i_{k}}-b_{i_{k+1}}\right)$; if $k=p$, set $\beta=\frac{1}{2}\left(b_{i_{k-1}}-b_{i_{k}}\right)$). Define the p initial conditions x_{1}, \ldots, x_{p} to be any p consecutive elements of the sequence

$$
x_{1}, \ldots, x_{2 i_{k}}, x_{1}, \ldots, x_{2 i_{k}}, \ldots
$$

where

$$
\begin{aligned}
& x_{1}=\frac{b_{i_{k}}}{2}+\beta_{1} \\
& \vdots \\
& x_{i_{k}}=\frac{b_{i_{k}}}{2}+\beta_{i_{k}} \\
& x_{i_{k}+1}=\frac{b_{i_{k}}}{2}-\beta_{1}, \\
& \vdots \\
& x_{2 i_{k}}=\frac{b_{i_{k}}}{2}-\beta_{i_{k}}
\end{aligned}
$$

and such that the β_{i} satisfy $\left|\beta_{i}\right|<\beta$. For each n,

$$
x_{n}=k \text {-rank }\left\{-\frac{b_{i_{k}}}{2}-\beta_{j_{1}}+b_{1}, \ldots,-\frac{b_{i_{k}}}{2}-\beta_{j_{p}}+b_{p}\right\} .
$$

Since $b_{i_{k-1}}-2 \beta \geqslant b_{i_{k}} \geqslant b_{i_{k+1}}+2 \beta$, we have

$$
-\frac{b_{i_{k}}}{2}+b_{i_{k-1}}-2 \beta \geqslant-\frac{b_{i_{k}}}{2}+b_{i_{k}} \geqslant-\frac{b_{i_{k}}}{2}+b_{i_{k+1}}+2 \beta
$$

so that the k th largest of the set is $-x_{n-i_{k}}+b_{i_{k}}$. This verifies that each x_{n} defined by the difference Eq. (16) follows the same pattern, and satisfies $x_{n}=x_{n-2 i_{k}}$. If the $\beta_{1}, \ldots, \beta_{k}$ are chosen all distinct, then the solution is not periodic of any lower period, so its prime period is $2 i_{k}$.

Remark. In addition to the solutions of prime period $2 i_{k}$, there are solutions of prime period $2 i_{k} / d$ for any odd natural number d dividing evenly into i_{k}. They are special cases of the above solutions obtained by setting $\beta_{s+1}=-\beta_{1}, \beta_{s+2}=-\beta_{2}, \ldots$, $\beta_{2 s}=-\beta_{s}, \beta_{2 s+1}=\beta_{1}, \ldots$, where $s=i_{k} / d$.

Note that difference equation (16) is the additive version of the multiplicative difference equation

$$
\begin{equation*}
x_{n}=k-\operatorname{rank}\left\{\frac{A_{1}}{x_{1}}, \ldots, \frac{A_{p}}{x_{p}}\right\} \tag{17}
\end{equation*}
$$

where $A_{i}>0$. If we set $y_{i}=\log x_{i}$ as in Example 2.7, we recover the form (16). The monotonicity of the logarithm implies that ranks of the x_{i} and y_{i} are unchanged. Eq. (17) in the case $k=1$ is the subject of extensive conjectures of Ladas [9] and Grove and Ladas [7]. In the following, we extend Ladas's max-type conjectures to the context of general rank-type equations. We state them in additive form (16), though they are easily translated to the multiplicative form (17).

Definition. The solution $\left\{x_{n}\right\}$ of a difference equation is called eventually periodic with period p if there exists an integer $N>0$ such that $x_{n+p}=x_{n}$ for all $n \geqslant N$.

Conjecture 4.2. Consider the difference equation (16) where the b_{1}, \ldots, b_{p} are ordered as

$$
b_{i_{1}}>\cdots>b_{i_{k-1}}>b_{i_{k}}>b_{i_{k+1}}>\cdots>b_{i_{p}}
$$

that is, $b_{i_{k}}$ is the kth largest of distinct b_{i}. Then all solutions are eventually periodic with period $2 i_{k}$. (The prime period may be a divisor of $2 i_{k}$.)

For example, the case $p=3, k=2$ concerns the equation

$$
\begin{equation*}
x_{n}=\operatorname{median}\left\{-x_{n-1}+b_{1},-x_{n-2}+b_{2},-x_{n-3}+b_{3}\right\} . \tag{18}
\end{equation*}
$$

The conjecture holds that for any initial conditions, the solution is eventually periodic with period
2 if $b_{2}<b_{1}<b_{3}$ or $b_{3}<b_{1}<b_{2}$,
4 if $b_{1}<b_{2}<b_{3}$ or $b_{3}<b_{2}<b_{1}$,
6 if $b_{1}<b_{3}<b_{2}$ or $b_{2}<b_{3}<b_{1}$.
The requirement in Conjecture 4.2 that $b_{i_{k}}$ is nonrepeating is important. If this requirement is lifted, although eventual periodicity is still expected, the formula for the period is more complicated. Continuing the case $p=3, k=2$ we have:

Proposition 4.3. Uncountably many solutions of the Eq. (18) exist with prime periods
2 if $b_{1}=b_{3} \neq b_{2}$,
3 if $b_{1}=b_{2} \neq b_{3}$,
4 if $b_{1}=b_{2}=b_{3}$,
5 if $b_{2}=b_{3} \neq b_{1}$.

Proof. It is easily checked that the following sequences satisfy the difference Eq. (18).
Case 1: $b_{1}=b_{3} \neq b_{2}$. For any β, define

$$
\begin{aligned}
& x_{1}=\frac{b_{1}}{2}+\beta \\
& x_{2}=\frac{b_{1}}{2}-\beta
\end{aligned}
$$

Then $x_{1}, x_{2}, x_{1}, x_{2}, \ldots$ is a solution.

Case 2: $b_{1}=b_{2} \neq b_{3}$. Set

$$
\begin{aligned}
& x_{1}=\frac{b_{1}}{2}+\beta \\
& x_{2}=\frac{b_{1}}{2}+\beta \\
& x_{3}=\frac{b_{1}}{2}-\beta
\end{aligned}
$$

where β is any number between 0 and $\left(b_{3}-b_{1}\right) / 2$. Then $x_{1}, x_{2}, x_{3}, x_{1}, x_{2}, x_{3}, \ldots$ is a solution.
Case 3: $b_{1}=b_{2}=b_{3}$. For any β, set

$$
\begin{aligned}
& x_{1}=\frac{b_{1}}{2}+\beta \\
& x_{2}=\frac{b_{1}}{2}+\beta \\
& x_{3}=\frac{b_{1}}{2}-\beta \\
& x_{4}=\frac{b_{1}}{2}-\beta
\end{aligned}
$$

Then $x_{1}, x_{2}, x_{3}, x_{4}, x_{1}, x_{2}, x_{3}, x_{4}, \ldots$ is a solution.
Case 4: $b_{2}=b_{3} \neq b_{1}$. Define

$$
\begin{aligned}
& x_{1}=\frac{b_{1}}{2}+\beta \\
& x_{2}=\frac{b_{1}}{2}+\beta \\
& x_{3}=\frac{b_{1}}{2}+\beta \\
& x_{4}=\frac{b_{1}}{2}-\beta \\
& x_{5}=\frac{b_{1}}{2}-\beta
\end{aligned}
$$

where β is any number between 0 and $\left(b_{1}-b_{2}\right) / 2$. Then $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots$ is a solution, completing the proof.

We conjecture that the periodic solutions found above represent all possible periods for the $p=3, k=2$ rank-type equation. More precisely, we propose the following:

Conjecture 4.4. Consider the difference equation (18). Then all solutions are eventually periodic, with period
2 if $b_{2}<b_{1}<b_{3}$ or $b_{3}<b_{1}<b_{2}$,
4 if $b_{1}<b_{2}<b_{3}$ or $b_{3}<b_{2}<b_{1}$,
6 if $b_{1}<b_{3}<b_{2}$ or $b_{2}<b_{3}<b_{1}$,
2 if $b_{1}=b_{3} \neq b_{2}$,
3 if $b_{1}=b_{2} \neq b_{3}$,
4 if $b_{1}=b_{2}=b_{3}$,
5 if $b_{2}=b_{3} \neq b_{1}$.
See [19] for a proof of analogous results for the $p=3, k=1$ case. We expect that similar methods may suffice to prove Conjecture 4.4.

Acknowledgements

The research was partially supported by National Science Foundation grant DMS-0811096. The author is grateful to an anonymous referee for correcting a calculation and for alerting the author to several relevant publications of Stevic.

References

[1] K. Berenhaut, J. Foley, S. Stevic, Boundedness character of positive solution of a max difference equation, J. Differ. Equ. Appl. 12 (2006) $1183-1189$.
[2] W.J. Bride, E.A. Grove, C.M. Kent, G. Ladas, Eventually periodic solutions of $x_{n+1}=\max \left\{1 / x_{n}, A_{n} / x_{n-1}\right\}$, Commun. Appl. Nonlinear Anal. 6 (1999) $31-34$.
[3] Y. Chen, Eventually periodicity of $x_{n+1}=\max \left\{1 / x_{n}, A_{n} / x_{n-1}\right\}$ with periodic coefficients, J. Differ. Equ. Appl. 11 (2005) 1289-1294.
[4] C. Cinar, S. Stevic, I. Yalcinkaya, On positive solutions of a reciprocal difference equation with minimum, J. Appl. Math. Comput. 17 (2005) $307-314$.
[5] J. Feuer, On the eventual periodicity of $x_{n+1}=\max \left\{1 / x_{n}, A_{n} / x_{n-1}\right\}$ with a period-four parameter, J. Differ. Equ. Appl. 12 (2006) 467-486.
[6] E.A. Grove, C. Kent, G. Ladas, M. Radin, On $x_{n+1}=\max \left\{1 / x_{n}, A_{n} / x_{n-1}\right\}$ with a period 3 parameter, Fields Inst. Commun. 29 (2001) 161-180.
[7] E.A. Grove, G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman \& Hall/CRC Press, 2005.
[8] C.M. Kent, M.A. Radin, On the boundedness nature of positive solutions of the difference equation $x_{n+1}=\max \left\{A_{n} / x_{n}, B_{n} / x_{n-1}\right\}$ with periodic parameters, Dyn. Contin. Discrete Impulse Syst. Ser. B Appl. Alg. (2003) 11-15.
[9] G. Ladas, On the recursive sequence $x_{n+1}=\max \left\{A_{0} / x_{n}, \ldots, A_{k} \mid x_{n-k}\right\}$, J. Differ. Equ. Appl. 2 (1996) 339-341.
[10] W.E. Ricker, Stock and recruitment, J. Fish. Res. Board Can. 11 (1954) 559-623.
[11] T. Sauer, Global convergence of max-type equations, J. Differ. Equ. Appl. in press.
[12] S. Stevic, Behaviour of the positive solutions of the generalized Beddington-Holt equation, Panamer. Math. J. 10 (2000) 77-85.
[13] S. Stevic, On the recursive sequence $x_{n+1}=\max \left\{c, x_{n}^{p} / x_{n-1}^{p}\right\}$, Appl. Math. Lett. 21 (2008) 791-796.
[14] S. Stevic, Global stability of a difference equation with maximum, Appl. Math. Comput. 210 (2009) 525-529.
[15] S. Stevic, Global stability of a max-type equation, Appl. Math. Comput. 216 (2010) 354-356.
[16] S. Stevic, B. Iricanin, On a max-type difference inequality and its applications, Discrete Dyn. Nat. Soc. 975740 (2010).
[17] F. Sun, On the asymptotic behavior of a difference equation with maximum, Discrete Dyn. Nat. Soc. 243291 (2008).
[18] I. Szalkai, On the periodicity of the sequence $x_{n+1}=\max \left\{A_{0} / x_{n}, \ldots, A_{k} \mid x_{n-k}\right\}$, J. Differ. Equ. Appl. 5 (1999) 25-29.
[19] H.D. Voulov, On the periodic nature of the solutions of the reciprocal difference equation with maximum, J. Math. Anal. Appl. 296 (2004) 32-43.
[20] H.D. Voulov, On a difference equation with periodic coefficients, J. Differ. Equ. Appl 13 (2007) 443-452.
[21] X. Yang, X. Liao, C. Li, On a difference equation with maximum, Appl. Math. Comput. 181 (2006) 1-5.

[^0]: E-mail address: tsauer@gmu.edu
 0096-3003/\$ - see front matter © 2010 Elsevier Inc. All rights reserved.
 doi:10.1016/j.amc.2010.11.005

