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Keywords: Convergence results are presented for rank-type difference equations, whose evolution
Difference equations rule is defined at each step as the kth largest of p univariate difference equations. If the uni-
Convergence variate equations are individually contractive, then the equation converges to a fixed point
Rank-type equal to the kth largest of the individual fixed points of the univariate equations. Examples

are max-type equations for k=1, and the median of an odd number p of equations, for
k=(p+ 1)/2. In the non-hyperbolic case, conjectures are stated about the eventual period-
icity of the equations, generalizing long-standing conjectures of G. Ladas.
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1. Introduction

For a set of p real numbers {ry,...,1,}, denote the kth-largest element of the set by k-rank{ry,...,r,}. Thus
2-rank{6,2,5,3} =5, and 1-rank is synonymous with max.
Let fi R— Rfori=1,...,p be real-valued functions. Consider the difference equation

Xn = k — rank{fi (xn1),f2(Xn2), .. . fo(Xnp)} (M
for initial data x4, ..., x,. We will call such an equation a rank-type difference equation. If the f; are continuous, then x, is a
continuous function of x,,_1, ..., X,_,. Special cases of rank-type equations include

Xn = max{f1 (Xn—1)7f2 (anz)a s :f;:(xnfp)}: (2)

Xn = Min{fi (Xn-1),f2(Xn-2), - ., fo(Xnp)} 3)
and

Xp = mEdian{fl (Xn—l >7f2 (Xn—2)7 s 7fp (Xn—p)} (4)

in the case where p is odd.

Max-type equations, corresponding to the special case k=1 in difference Eq. (1), have been extensively studied [1-
9,14,13,17-21]. The purpose of this article is to note that, perhaps surprisingly, many of the properties of max-type equations
are shared more generally by rank-type equations for k > 1.

Definition. The function fis called contractive if there exists 0 < « < 1 and a real number r such that |[f(x) — r| < o|x — r| for all x.

Definition. The solution {x,},-; of a difference equation is called globally convergent if there exists r such that for every set of
initial values, lim,_,..x, = r. In this case, the equilibrium r is called globally attractive.
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In the next section we show that if the f; are contractive with fixed points r;, then the difference Eq. (1) is globally con-
vergent for any set {x;,...,x,} of initial values, converging in the limit to the fixed point k-rank {ry,...,1p}.

This result is a generalization of the convergence theorem for max-type equations, the k=1 case [11]. If p is odd and
k=(p+1)/2, then the convergence result corresponds to replacing max by median. The corresponding statement for mean
is false; see Example 2.6.

Theorem 2.3 below is the main global convergence result, proved in a context slightly more general than (1). The tech-
niques used to prove Theorem 2.3 can also be applied to prove a local convergence version, Theorem 3.1. In the final section,
we relax the hyperbolicity restriction and state some conjectures, generalizing well-known conjectures of Ladas [9] and
Grove and Ladas [7] on max-type equations.

2. Global convergence
In this section, we prove the main convergence result for rank-type maps after two preliminary lemmas.

Lemma 2.1. Let p be a positive integer, r and 0 < o < 1 real numbers, and let {x,},., be a sequence of real numbers. Assume that
for each n there exists i, possibly depending on n,1 < i< p, such that |x,, — r| < a|x,_; — 1. Then lim,_ . X, =T.
The proof of Lemma 2.1 can be found in [12] as well as [11]. The next lemma generalizes Lemma 2.2 of [11].

Lemma 2.2. Let uy, Uy, y; < Y, and s, < 1 < Sq be real numbers, and assume |y; — ;| < a|u; — S;| fori=1, 2 for some 0 < o < 1. Then

(1) |y2 — 1| < a|u; — 1| for either j=1 or j=2, and
(ii) ly; — 1] < afu; — 1| for either j=1 or j =2.

Proof. We give the proof of (i). The proof of (ii) follows by applying (i) to —uy, —u, —y2, —¥1, —S1, =T, —S>.
The proof of (i) is divided into four cases.
Case 1: y, <r, u; > s1. In this case,
Vo =T =T=Yy, <S1 =Y, <S1 =Yy =81 =Yi| < afst — | = a(uy — 1) < a(uy —1) = ofug — 1.
Case 2: y, <, Uy <Sq.
Vo —1l=r=y, <r—y;=r—si+s1 =y =r—s1+[y; —s1| <r—si +afus —s1| =1 —51 +0(s1 — Uy)
Kr=s1+os1—u)+ (1 —0)(sy—1)=0o(r—uy) < alr—u.
Case 3: yo, =r,Up >T.
Vo =T =Yy =T =Y, —S2+Sa—T =V, —=S2|+S2—T< AUy —S3| +S; —Tr=0(Uy —S2) + S, — T
<oy =)+ S -1+ (1 —-0)(r—s) =0o(uy — 1) =0ot|uy — .

Case4: y, =1, up; <.
If u, > s, then

r—S8 <Yy —S2 =V, — S2| <ty — S2| = ot(Uz — $2) < oU(r — S2),
a contradiction. So in addition, we may assume u; < s, < r. Then
Vo =T =Y, =T <Yy —S2 =¥ — 2 < afuy — S| = Sy — ) < a(r —up) = atfuy — 71,

which completes the proof. O

Theorem 2.3. Consider p nonnegative integers qy, . . ., qp, and let 0 < o < 1. Assume for eachi, j satisfying 1 <i < p, 1 <j < q; there
exists a function f;: R — R and a real number r;; satisfying

[fis(x) — 1| < otfx — 1
for all x. Then for any k and for any set {x;,...,xp} of initial values, the solution of the difference equation
Xn = k-rank; <i<p 1<j<q, {fi(Xn—i)} (5)

converges to k-rank<i<p1<j<q,Tij the kth-largest of the ry;.

Proof. There are q = Y7 ,q; functions f;, each with fixed point r;. Rank the g fixed points as follows:

Tijy 2 Tpjy 2 -+ 2 Tigjy-
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We need to prove that the sequence x, = k-rank{f;;(x,_;)} converges to r = r;;, = k-rank r;.

For a fixed n, define iy, jm so that x, = k-rank;;{f;(X,—i)} = fi.ji, Xa—i,)- To apply Lemma 2.1, we will find x,_; satisfying
|xn — 1 < atfx,_; — 1] where 1 <i<p.

If m=k, then |x, —r| < ofx,_;, —r|, as required. If m<k, then there exists an integer he{kk+1,...,q} such that
Sinin ®nziy) = finj,, ®ni,)- Thus m <k < h, or in other words, r;; > r; = ri,;,- Now we can apply Lemma 2.2 with s; =1, <
r=Tij, <S1="Tiy,» Y1 ="Ffinj, Xn_in) < Y2 = fi,j, Xn_i,), and uq = Xn_;,,, U = X,_;,. The result of part (ii) of the lemma is that

[Xn — 1| = [k-ranki<icp 1<jcq {fi(Xn-i) } — T < oz = 7], (6)

where z = x,_;, or X,_;,, as required. Finally, if m >k, there exists h e {1,2,...,k} such that f; (xn_i,) < finj, Xn-in). Thus
h<k<m, or in other words, ry; > ryj > ri,,. Part (i) of Lemma 2.2 with s;=r;,;, <r=ri <s$1="rij, Y1 =
Jinin Xnziy) < Y2 = finj Xnin)» and Uy = Xy, Uz = Xn_y,, yields (6) as before.
This satisfies the hypotheses of Lemma 2.1, so
lim x, = r = k-rank {r;}. O

n—oo

Setting all g; = 1 in Theorem 2.3 covers the special case referred to as Eq. (1) in the introduction.

Corollary 24. Let ry, ..., 1, be real numbers and assume fi: R — R for i=1, ..., p satisfy |fi(x) — ri| < «|x — r;| for all x, where
0 < o< 1. Then for any set {x;,...,x,} of initial values, the solution of difference equation
Xn = k-rank {fi(xn_1),...,fo(Xn—p)} (7)

converges to k-rank {ry,...,1,} as n - cc.
Example 2.5. As an application of Corollary 2.4, consider the difference equation

1 1
Xp = k—rank{a] T+ bpxﬁp}’ (8)

n-1

where 0 < a;, 0 < b; < (4a;/3)* fori=1, ..., p. Under these conditions, for each i, the first derivative of f(x) = 1/(a; + bx?) is smal-
ler than 1 in absolute value for all x. By the Mean Value Theorem, the hypotheses of Corollary 2.4 hold where r; denotes the
real root of the equation bx> + ax = 1. Therefore all solutions of (8) must converge to k-rank {ry,...,r,}.

A particular case of (8) for k = 2 is the difference equation

Xp = median{ 1 1 1 } 9)
" 12+07x2 ;'1+x2,°1.1+09x2 5

The fixed points of
Y7 Jmem— S DU %
125 07x 12 T 1R Y T 1110982

are approximately r; = 0.6632, r, = 0.6823, and exactly r; = 2/3, respectively. Corollary 2.4 implies that all solutions of (9)
converge to r3 = 2/3, the median of the three fixed points.

Remark. Corollary 2.4 implies that if p is odd, then the median difference Eq. (4) converges to the median of the individual
fixed points of f3, . . ., f,. However, if p is even, and we follow the usual convention that the median refers to the average of the
two middle ranked entries, this statement fails to hold, as shown in the next example.

Example 2.6. If a; + a, <2 for positive numbers a;, a,, the equation

Xn = median{a;x,_1 + b1, axXn_2 + by} (10)
is equivalent to

Xn = mean{a;X,_1 + by, axxn_5 + by}
and converges to the fixed point
ALHO})XH = (b] + bz)/(z —-a; — az).

This disagrees in general with the mean of the fixed points of fi(x)=a;x + by and f5(x) = a;x + b,, which is b;/2(1 — a;) +
by/2(1 — az).

Example 2.7. Consider the difference equation

Xn = k-rank{A;x2 ..., Apx’ )}, (11)

n-1’
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where A;>0, —1<ao;<1fori=1,...,p,and xy, ..., X, are initial values. Set y, = logx,,. In these coordinates, the ith equation is
Yn = 0yn_i + logA;, and due to monotonicity of the logarithm, (11) is replaced with

Yo = k-rank{ony, ; +10gA, ..., 0y, , +10gA,}.

Corollary 2.4 shows that for any set of positive initial values x4, . . ., X, the y, sequence converges to k-rank {logA;/(1 — o;)}, so
that

1
lim x, = k-rank; ;,A; "
n—oo
This proves asymptotic convergence of (11) for —1 < a; < 1, A; > 0, and for all positive initial conditions. The max-type version
of the problem, corresponding to k = 1, was previously treated in [11,14-17].

3. Local convergence

Definition. The constant solution x, = r of a difference equation will be called locally attractive if for some p-dimensional
open neighborhood of initial values (x;,...,x,) =(r,...,r), the solution converges to the constant solution r.

This definition concerns local convergence, for cases when nearby initial values are attracted to a given constant solution.
In the context of rank-type equations, in order to make conclusions about local convergence, an extra hypothesis that is not
strictly local needs to be added to control the contractivity between the individual fixed points, as shown in the next theorem.

Theorem 3.1. Consider p nonnegative integers q, ..., q,, and let 0 < o < 1. Assume for eachi, j satisfying 1 <i < p,1 <j < q; there
exists a continuously differentiable function fi: R — R and a real number ry satisfying f;(r;) = . Let iy, jx be integers satisfying
Tigi, = k-rank;;r;. Assume that for each i,j, (X)) < o for x between r; and r;;,. Then the constant solution x, = r;;, of the rank-
type difference equation

Xn = k-rank;cicp1<j<q {fi(Xn=i)} (12)

is locally attractive.

Proof. Choose € >0 such that for each i,j, [f(x)] <o = (2 +1)/2 <1 for r — € <x <y, +€ Foreachi,jand ry —€<x<
Tij + € the Mean Value Theorem implies |f;j(x) — ry| < a1]x — ry|. Define the open set U = {(x1,...,Xp) : [Xi — 75| < €,1<
i<p}.

The remainder of the proof is similar to the proof of Theorem 2.3. Choose (xj, .. .,xp) from U, and for each n > p, choose 7, j/
such that x, = max;;{f;j(x,_i)} = fyj (x,_y). Apply Lemma 2.2 with uy = x,_;,, ¥1 = fij, ¥n_i,), U2 =Xy, Y2 =fi7 (X 1), $1 =
Tij,» and s, = ry;. Lemma 2.2 implies that

X0 — Tigi | = |H}?X{ﬁj(xn4)} —Tigl < oulz =il

where z=Xx,_; or X, ;. This implies that (a) x, belongs to U and (b) we can apply Lemma 2.1 to conclude that
limy_.X, =13, O

The g; = 1 special case is the local version of Corollary 2.4.

Corollary 3.2. Assume that the continuously differentiable functions f;: R — R and real numbers r; fori=1, ..., p satisfy fi(r;) =1
Let i, be an integer satisfying r; = k-rank;;<,r;, and assume that there exists 0 < o< 1 such that for 1 <i < p,|f/(x)| < a for x
between r; and r; . Then the constant solution x, = r;,_ of the difference equation

Xn = k-rank{fi (Xn_1), ..., fo(Xn_p)} (13)

is locally attractive.
We revisit two examples of max-type equations from [11], and discuss them in the more general context of Corollary 3.2.

Example 3.3. As a first example, consider the rank-type equation involving Ricker maps [10]
X = k-rank{x, jem(=xn-1/c0) o x, e% (I /6)y (14)

where each map f;(x) = xe%(-*/%) in (13) has growth parameter a; > 0 and carrying capacity ¢; > 0. Since f/(0) = e% > 1, f;is
not contractive, and the hypotheses of Corollary 2.4 are not satisfied.

However, note that if 0<a;<2, then ¢; is a stable fixed point for f; since the derivative of fi(x) = xe®(1-%/%) s
flx) = (1 —aix/c;)e%1=*/%), and |f/(c;)| = |1 — a;| < 1. In addition, the second derivative shows that f/(x) is decreasing on the
interval [c;, 2¢;/a;) from f/(c;) = 1 — a; to f/(2¢;/a;) = —e®%~2, and increasing on the interval (2c;/a; oo0) from f!(2c;/a;) = —e%~2 to
0. It follows immediately that |f/(x)| < max{|1 — a;|,e%2} < 1 for ¢; < x. Now the main hypothesis of Corollary 3.2, that for
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eachi, [f/ (x)| = |(1 — aix/c;)e% 1%/ | < o = max;{|1 — a5, e%~2} < 1 for x between c; and c;,, is verified. Therefore the constant
solution {c;,,c;,, ...} is locally attractive for the rank-type Eq. (14), where ¢; = k-rank{c;} is the kth-largest of the carrying
capacities of the p individual Ricker maps.

Example 3.4. Assume —1/4 <a;<3/4 for 1 <i < p. Then the fixed point r; = a; + 1 — /a; + 3 of fi(x) = (x — a;)? is an attracting
fixed point. Note that each fixed point lies in the interval [0,3).
We can apply Corollary 3.2 to the difference equation

Xy = k—rank{(x,.,,1 — 1), (Xn2 — @)%, ..., (Xn_p — ap)z}. (15)

Note that for each j and for x between x =r; and x =}, f/(x) is increasing from f/(r;) = 1 — v/4a; + Tto f/ (}) = 2(} — @;), so that
Iff(x)] < max {|1 - v4a; +1|,|2(; — a;)|} < 1, satisfying the main hypothesis of Corollary 3.2. It follows that the constant

solution x, = r;,, the kth-largest of the p individually attracting fixed points of the f; is locally attractive for the rank-type

Eq. (15).

4. Non-hyperbolic case

Far less is known in the non-hyperbolic case, where the restriction that o < 1 is relaxed. Because of the lack of hyperbo-
licity, convergence cannot be expected for general initial conditions. In many cases the solution becomes periodic for suffi-
ciently large n. A particularly rich case concerns the difference equation

Xn = k-rank{—x, 1 + by,..., =Xy, + bp}. (16)

Remark. First define i, to be the index of the kth-largest b;, namely b; = k-rank {b,,...,b,}. Then it is straightforward to
check that (16) has a fixed-point solution x; =x; = --- = 1b;,.

With more assumptions, many more periodic solutions can be generated. We say that a solution has prime period s if it is
periodic with period s and with no lower period.

Proposition 4.1. Assume that the by, ..., b, in (16) are ordered as

by =---=b_, >b,>b_ == bi,,~

That is, assume that b

period 2i,.
The solutions can be described as follows. Define

i» the kth-largest b;, is not repeated in the list. Then there are uncountably many solutions of (16) with prime

1.
B=5 min{b;_, — bj,,b;, — b, }.
(If k=1, set f=1(b;, — by, ,); if k=p, set p=1(b

elements of the sequence

1

— b;,)). Define the p initial conditions x4, ..., X, to be any p consecutive

iy g

X],...,Xz,’k.,Xh...,ijk,...
where
b;
X1 :7k+ﬁ1,
b;
_ Tk
Xi, —7+ﬁik,

b;
xik+1 = 7" - ﬁl7

b:
X2i, = % = B,
and such that the p; satisfy |B;| < . For each n,

by by
Xn :1<-rank{_7k_ﬁh by g +bp}.
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Since b;,_, — 2 > b; > b;,, +2p, we have
b; b; b;
- % + bik—1 - zﬁ 2 - % + bi/( 2 - % + bikﬂ + 2ﬁ7

so that the kth largest of the set is —x,_; + b;,. This verifies that each x,, defined by the difference Eq. (16) follows the same
pattern, and satisfies x, = x,_5;,. If the 1, ..., B¢ are chosen all distinct, then the solution is not periodic of any lower period,
so its prime period is 2ij.

Remark. In addition to the solutions of prime period 2i, there are solutions of prime period 2i,/d for any odd natural
number d dividing evenly into i,. They are special cases of the above solutions obtained by setting fizc1 = —B1, Bs+2 = —f2, - - -»
Bas=—Ps, Pas+1 = P1, ..., where s =i/d.

Note that difference equation (16) is the additive version of the multiplicative difference equation
Xy = k—rank{ﬁ, . 7@}7 (17)
X1 Xp

where A; > 0. If we set y; = log x; as in Example 2.7, we recover the form (16). The monotonicity of the logarithm implies that
ranks of the x; and y; are unchanged. Eq. (17) in the case k = 1 is the subject of extensive conjectures of Ladas [9] and Grove
and Ladas [7]. In the following, we extend Ladas’s max-type conjectures to the context of general rank-type equations. We
state them in additive form (16), though they are easily translated to the multiplicative form (17).

Definition. The solution {x,} of a difference equation is called eventually periodic with period p if there exists an integer N > 0
such that x,., =x, forall n > N.

Conjecture 4.2. Consider the difference equation (16) where the by, ..., b, are ordered as

by, >--->b; , >b, >b, >--->b,

that is, by, is the kth largest of distinct b;. Then all solutions are eventually periodic with period 2i\. (The prime period may be a
divisor of 2i.)

For example, the case p = 3, k =2 concerns the equation
X, = median{—x, 1 + b1, —X,_2 + by, —Xn_3 + bs}. (18)

The conjecture holds that for any initial conditions, the solution is eventually periodic with period

2 if by < by <bs orbs <b; <by,
4 ifb]<b2<b3 Orb3<b2<b],
6 ifb]<b3<b2 orb2<b3<b1.

The requirement in Conjecture 4.2 that b;, is nonrepeating is important. If this requirement is lifted, although eventual peri-
odicity is still expected, the formula for the period is more complicated. Continuing the case p = 3, k = 2 we have:

Proposition 4.3. Uncountably many solutions of the Eq. (18) exist with prime periods

2 if by =bs # by,
3 if by = by # bs,
4 if by = by = b,
5 if by = b3 # by.

Proof. It is easily checked that the following sequences satisfy the difference Eq. (18).

Case 1: by = b3 # b,. For any B, define

X1 —7'1'[37
_b1
Xz—i—ﬁ.

Then x4, X2, X1, X2, ... is a solution.
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Case 2: by =b, # bs. Set

by
X1 *j+ﬂ7
X2—7+ﬁ7
b,
x3—7 ﬂa

where f is any number between 0 and (bs — b;)/2. Then x4, X, X3, X1, X2, X3, ... iS a solution.
Case 3: b; = b, = bs. For any B, set

X1 :%+[3,
X2:%+57
X3:% B,
b

Then x4, X3, X3, X4, X1, X2, X3, X4, ... iS a solution.
Case 4: b, =bs # b,. Define

X1 :b2—1+ﬂ7
X2:%+ﬂ7
x3:%+ﬂ,
X4:%*ﬂ7
Xsi%—[ﬁ

where g is any number between 0 and (b; — by)/2. Then xq, X2, X3, X4, X5, X1, X2, X3, X4, X5, ... iS @ solution, completing the
proof. O

We conjecture that the periodic solutions found above represent all possible periods for the p = 3, k = 2 rank-type equa-
tion. More precisely, we propose the following:

Conjecture 4.4. Consider the difference equation (18). Then all solutions are eventually periodic, with period

2 l.fb2<b1<b3 OT'b3<b1<bz7

4 if by <by <bs or bz < b, < by,
6 if by <bs <by, orb, <bs<by,
2 if by = b3 # by,
3 if by = by # bs,
4 if by = by = bs,

5 lfb2:b3?5b1.

See [19] for a proof of analogous results for the p =3, k=1 case. We expect that similar methods may suffice to prove
Conjecture 4.4.
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