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Convergence results are presented for rank-type difference equations, whose evolution
rule is defined at each step as the kth largest of p univariate difference equations. If the uni-
variate equations are individually contractive, then the equation converges to a fixed point
equal to the kth largest of the individual fixed points of the univariate equations. Examples
are max-type equations for k = 1, and the median of an odd number p of equations, for
k = (p + 1)/2. In the non-hyperbolic case, conjectures are stated about the eventual period-
icity of the equations, generalizing long-standing conjectures of G. Ladas.

! 2010 Elsevier Inc. All rights reserved.

1. Introduction

For a set of p real numbers {r1, . . . ,rp}, denote the kth-largest element of the set by k-rank{r1, . . . ,rp}. Thus
2-rank{6,2,5 ,3} = 5, and 1-rank is synonymous with max.

Let fi: R? R for i = 1, . . . ,p be real-valued functions. Consider the difference equation

xn ¼ k" rankff1ðxn"1Þ; f2ðxn"2Þ; . . . ; fpðxn"pÞg ð1Þ

for initial data x1, . . . , xp. We will call such an equation a rank-type difference equation. If the fi are continuous, then xn is a
continuous function of xn"1, . . . , xn"p. Special cases of rank-type equations include

xn ¼ maxff1ðxn"1Þ; f2ðxn"2Þ; . . . ; fpðxn"pÞg; ð2Þ
xn ¼ minff1ðxn"1Þ; f2ðxn"2Þ; . . . ; fpðxn"pÞg ð3Þ

and

xn ¼ medianff1ðxn"1Þ; f2ðxn"2Þ; . . . ; fpðxn"pÞg ð4Þ

in the case where p is odd.
Max-type equations, corresponding to the special case k = 1 in difference Eq. (1), have been extensively studied [1–

9,14,13,17–21]. The purpose of this article is to note that, perhaps surprisingly, many of the properties of max-type equations
are shared more generally by rank-type equations for k > 1.

Definition. The function f is called contractive if there exists 0 6 a < 1 and a real number r such that jf(x) " rj 6 ajx " rj for all x.

Definition. The solution fxng1n¼1 of a difference equation is called globally convergent if there exists r such that for every set of
initial values, limn?1xn = r. In this case, the equilibrium r is called globally attractive.
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In the next section we show that if the fi are contractive with fixed points ri, then the difference Eq. (1) is globally con-
vergent for any set {x1, . . . ,xp} of initial values, converging in the limit to the fixed point k-rank {r1, . . . ,rp}.

This result is a generalization of the convergence theorem for max-type equations, the k = 1 case [11]. If p is odd and
k = (p + 1)/2, then the convergence result corresponds to replacing max by median. The corresponding statement for mean
is false; see Example 2.6.

Theorem 2.3 below is the main global convergence result, proved in a context slightly more general than (1). The tech-
niques used to prove Theorem 2.3 can also be applied to prove a local convergence version, Theorem 3.1. In the final section,
we relax the hyperbolicity restriction and state some conjectures, generalizing well-known conjectures of Ladas [9] and
Grove and Ladas [7] on max-type equations.

2. Global convergence

In this section, we prove the main convergence result for rank-type maps after two preliminary lemmas.

Lemma 2.1. Let p be a positive integer, r and 0 6 a < 1 real numbers, and let fxng1n¼1 be a sequence of real numbers. Assume that
for each n there exists i, possibly depending on n,1 6 i 6 p, such that jxn " rj 6 ajxn"i " rj. Then limn?1xn = r.

The proof of Lemma 2.1 can be found in [12] as well as [11]. The next lemma generalizes Lemma 2.2 of [11].

Lemma 2.2. Let u1, u2, y1 6 y2, and s2 6 r 6 s1 be real numbers, and assume jyi " sij 6 ajui " sij for i =1, 2 for some 0 6 a < 1. Then

(i) jy2 " rj 6 ajuj " rj for either j = 1 or j = 2, and
(ii) jy1 " rj 6 ajuj " rj for either j = 1 or j = 2.

Proof. We give the proof of (i). The proof of (ii) follows by applying (i) to "u1, "u2, "y2, "y1, "s1, "r, "s2.
The proof of (i) is divided into four cases.

Case 1: y2 6 r, u1 P s1. In this case,

jy2 " rj ¼ r " y2 6 s1 " y2 6 s1 " y1 ¼ js1 " y1j 6 ajs1 " u1j ¼ aðu1 " s1Þ 6 aðu1 " rÞ ¼ aju1 " rj:

Case 2: y2 6 r, u1 6 s1.

jy2 " rj ¼ r " y2 6 r " y1 ¼ r " s1 þ s1 " y1 ¼ r " s1 þ jy1 " s1j 6 r " s1 þ aju1 " s1j ¼ r " s1 þ aðs1 " u1Þ
6 r " s1 þ aðs1 " u1Þ þ ð1" aÞðs1 " rÞ ¼ aðr " u1Þ 6 ajr " u1j:

Case 3: y2 P r, u2 P r.

jy2 " rj ¼ y2 " r ¼ y2 " s2 þ s2 " r ¼ jy2 " s2jþ s2 " r 6 aju2 " s2jþ s2 " r ¼ aðu2 " s2Þ þ s2 " r

6 aðu2 " s2Þ þ s2 " r þ ð1" aÞðr " s2Þ ¼ aðu2 " rÞ ¼ aju2 " rj:

Case 4: y2 P r, u2 6 r.
If u2 P s2, then

r " s2 6 y2 " s2 ¼ jy2 " s2j 6 aju2 " s2j ¼ aðu2 " s2Þ 6 aðr " s2Þ;

a contradiction. So in addition, we may assume u2 < s2 6 r. Then

jy2 " rj ¼ y2 " r 6 y2 " s2 ¼ jy2 " s2j 6 aju2 " s2j ¼ aðs2 " u2Þ 6 aðr " u2Þ ¼ aju2 " rj;

which completes the proof. h

Theorem 2.3. Consider p nonnegative integers q1, . . . , qp, and let 0 6 a < 1. Assume for each i, j satisfying 1 6 i 6 p, 1 6 j 6 qi there
exists a function fij: R? R and a real number rij satisfying

jfijðxÞ " rijj 6 ajx" rijj

for all x. Then for any k and for any set {x1, . . . , xp} of initial values, the solution of the difference equation

xn ¼ k-rank16i6p;16j6qiffijðxn"iÞg ð5Þ

converges to k-rank16i6p;16j6qi rij, the kth-largest of the rij.

Proof. There are q &
Pp

i¼1qj functions fij, each with fixed point rij. Rank the q fixed points as follows:

ri1 j1 P ri2j2 P ' ' ' P riqjq :
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We need to prove that the sequence xn = k-rank{fij(xn"i)} converges to r & rikjk ¼ k-rank rij.
For a fixed n, define im, jm so that xn & k-ranki;jffijðxn"iÞg ¼ fimjm ðxn"im Þ. To apply Lemma 2.1, we will find xn"i satisfying

jxn " rj 6 ajxn"i " rj where 1 6 i 6 p.
If m = k, then jxn " rj 6 ajxn"ik " rj, as required. If m < k, then there exists an integer h 2 {k,k + 1, . . . ,q} such that

fihjh ðxn"ih Þ P fimjm ðxn"im Þ. Thus m < k 6 h, or in other words, rimjm P rikjk P rihjh . Now we can apply Lemma 2.2 with s2 ¼ rihjh 6
r ¼ rikjk 6 s1 ¼ rimjm ; y1 ¼ fimjm ðxn"im Þ 6 y2 ¼ fihjh ðxn"ih Þ, and u1 ¼ xn"im ; u2 ¼ xn"ih . The result of part (ii) of the lemma is that

jxn " rj ¼ jk-rank16i6p;16j6qiffijðxn"iÞg" rj 6 ajz" rj; ð6Þ

where z ¼ xn"im or xn"ih , as required. Finally, if m > k, there exists h 2 {1,2, . . . ,k} such that fihjh ðxn"ih Þ 6 fimjm ðxn"im Þ. Thus
h 6 k <m, or in other words, rihjh P rikjk P rimjm . Part (i) of Lemma 2.2 with s2 ¼ rimjm 6 r ¼ rikjk 6 s1 ¼ rihjh ; y1 ¼
fihjh ðxn"ih Þ 6 y2 ¼ fimjm ðxn"im Þ, and u1 ¼ xn"ih ; u2 ¼ xn"im yields (6) as before.

This satisfies the hypotheses of Lemma 2.1, so

lim
n!1

xn ¼ r ¼ k-rank frijg: !
Setting all qi = 1 in Theorem 2.3 covers the special case referred to as Eq. (1) in the introduction.

Corollary 2.4. Let r1, . . . , rp be real numbers and assume fi: R? R for i = 1, . . . , p satisfy jfi(x) " rij 6 ajx " rij for all x, where
0 6 a < 1. Then for any set {x1, . . . , xp} of initial values, the solution of difference equation

xn ¼ k-rank ff1ðxn"1Þ; . . . ; fpðxn"pÞg ð7Þ

converges to k-rank {r1, . . . , rp} as n?1.

Example 2.5. As an application of Corollary 2.4, consider the difference equation

xn ¼ k-rank
1

a1 þ b1x2n"1
; . . . ;

1
ap þ bpx2n"p

( )
; ð8Þ

where 0 < ai, 0 6 bi < (4ai/3)3 for i = 1, . . . , p. Under these conditions, for each i, the first derivative of fi(x) = 1/(ai + bix2) is smal-
ler than 1 in absolute value for all x. By the Mean Value Theorem, the hypotheses of Corollary 2.4 hold where ri denotes the
real root of the equation bix3 + aix = 1. Therefore all solutions of (8) must converge to k-rank {r1, . . . ,rp}.

A particular case of (8) for k = 2 is the difference equation

xn ¼ median
1

1:2þ 0:7x2n"1
;

1
1þ x2n"2

;
1

1:1þ 0:9x2n"3

! "
: ð9Þ

The fixed points of

f1ðxÞ ¼
1

1:2þ 0:7x2
; f 2ðxÞ ¼

1
1þ x2

; f 3ðxÞ ¼
1

1:1þ 0:9x2

are approximately r1 = 0.6632, r2 = 0.6823, and exactly r3 = 2/3, respectively. Corollary 2.4 implies that all solutions of (9)
converge to r3 = 2/3, the median of the three fixed points.

Remark. Corollary 2.4 implies that if p is odd, then the median difference Eq. (4) converges to the median of the individual
fixed points of f1, . . ., fp. However, if p is even, and we follow the usual convention that the median refers to the average of the
two middle ranked entries, this statement fails to hold, as shown in the next example.

Example 2.6. If a1 + a2 < 2 for positive numbers a1, a2, the equation

xn ¼ medianfa1xn"1 þ b1; a2xn"2 þ b2g ð10Þ
is equivalent to

xn ¼ meanfa1xn"1 þ b1; a2xn"2 þ b2g

and converges to the fixed point

lim
n!1

xn ¼ ðb1 þ b2Þ=ð2" a1 " a2Þ:

This disagrees in general with the mean of the fixed points of f1(x) = a1x + b1 and f2(x) = a2x + b2, which is b1/2(1 " a1) +
b2/2(1 " a2).

Example 2.7. Consider the difference equation

xn ¼ k-rankfA1x
a1
n"1; . . . ;Apx

ap
n"pg; ð11Þ
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where Ai > 0, "1 < ai < 1 for i = 1, . . ., p, and x1, . . ., xp are initial values. Set yn = logxn. In these coordinates, the ith equation is
yn = aiyn"i + logAi, and due to monotonicity of the logarithm, (11) is replaced with

yn ¼ k-rankfa1yn"1 þ logA1; . . . ;apyn"p þ logApg:

Corollary 2.4 shows that for any set of positive initial values x1, . . ., xp, the yn sequence converges to k-rank {logAi/(1 " ai)}, so
that

lim
n!1

xn ¼ k-rank16i6pA
1

1"ai
i :

This proves asymptotic convergence of (11) for "1 < ai < 1, Ai > 0, and for all positive initial conditions. The max-type version
of the problem, corresponding to k = 1, was previously treated in [11,14–17].

3. Local convergence

Definition. The constant solution xn = r of a difference equation will be called locally attractive if for some p-dimensional
open neighborhood of initial values (x1, . . . ,xp) = (r, . . . ,r), the solution converges to the constant solution r.

This definition concerns local convergence, for cases when nearby initial values are attracted to a given constant solution.
In the context of rank-type equations, in order to make conclusions about local convergence, an extra hypothesis that is not
strictly local needs to be added to control the contractivity between the individual fixed points, as shown in the next theorem.

Theorem 3.1. Consider p nonnegative integers q1, . . . , qp, and let 0 6 a < 1. Assume for each i, j satisfying 1 6 i 6 p,1 6 j 6 qi there
exists a continuously differentiable function fij: R? R and a real number rij satisfying fij(rij) = rij. Let ik, jk be integers satisfying
rikjk ¼ k-ranki;jrij. Assume that for each i; j; jf 0ijðxÞj 6 a for x between rij and rikjk . Then the constant solution xn ¼ rikjk of the rank-
type difference equation

xn ¼ k-rank16i6p;16j6qiffijðxn"iÞg ð12Þ

is locally attractive.

Proof. Choose ! > 0 such that for each i; j; jf 0ijðxÞj 6 a1 & ðaþ 1Þ=2 < 1 for rij " ! < x < rikjk þ !. For each i, j and rij " ! < x <
rikjk þ !, the Mean Value Theorem implies jfij(x) " rijj 6 a1jx " rijj. Define the open set U ¼ fðx1; . . . ; xpÞ : jxi " rikjk j < !;1 6
i 6 pg.

The remainder of the proof is similar to the proof of Theorem 2.3. Choose (x1, . . . ,xp) from U, and for each n > p, choose i0, j0

such that xn ¼ maxi;jffijðxn"iÞg ¼ fi0 j0 ðxn"i0 Þ. Apply Lemma 2.2 with u1 ¼ xn"ik ; y1 ¼ fikjk ðxn"ik Þ; u2 ¼ xn"i0 ; y2 ¼ fi0j0 ðxn"i0 Þ; s1 ¼
rikjk , and s2 ¼ ri0 j0 . Lemma 2.2 implies that

jxn " rikjk j ¼ jmax
i;j

ffijðxn"iÞg" rikjk j 6 a1jz" rimjm j;

where z ¼ xn"ik or xn"i0 . This implies that (a) xn belongs to U and (b) we can apply Lemma 2.1 to conclude that
limn!1xn ¼ rikjk . h

The qi & 1 special case is the local version of Corollary 2.4.

Corollary 3.2. Assume that the continuously differentiable functions fi: R? R and real numbers ri for i = 1, . . ., p satisfy fi(ri) = ri.
Let ik be an integer satisfying rik ¼ k-rank16i6pri, and assume that there exists 0 6 a < 1 such that for 1 6 i 6 p; jf 0i ðxÞj 6 a for x
between ri and rik . Then the constant solution xn ¼ rik of the difference equation

xn ¼ k-rankff1ðxn"1Þ; . . . ; fpðxn"pÞg ð13Þ

is locally attractive.
We revisit two examples of max-type equations from [11], and discuss them in the more general context of Corollary 3.2.

Example 3.3. As a first example, consider the rank-type equation involving Ricker maps [10]

xn ¼ k-rankfxn"1ea1ð1"xn"1=c1Þ; . . . ; xn"peapð1"xn"p=cpÞg; ð14Þ

where each map fiðxÞ ¼ xeaið1"x=ciÞ in (13) has growth parameter ai P 0 and carrying capacity ci P 0. Since f 0i ð0Þ ¼ eai P 1, fi is
not contractive, and the hypotheses of Corollary 2.4 are not satisfied.

However, note that if 0 < ai < 2, then ci is a stable fixed point for fi, since the derivative of fiðxÞ ¼ xeaið1"x=ciÞ is
f 0i ðxÞ ¼ ð1" aix=ciÞeaið1"x=ciÞ, and jf 0i ðciÞj ¼ j1" aij < 1. In addition, the second derivative shows that f 0i ðxÞ is decreasing on the
interval [ci,2ci/ai) from f 0i ðciÞ ¼ 1" ai to f 0i ð2ci=aiÞ ¼ "eai"2, and increasing on the interval (2ci/ai,1) from f 0i ð2ci=aiÞ ¼ "eai"2 to
0. It follows immediately that jf 0i ðxÞj 6 maxfj1" aij; eai"2g < 1 for ci 6 x. Now the main hypothesis of Corollary 3.2, that for
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each i; jf 0i ðxÞj ¼ ð1" aix=ciÞeaið1"x=ciÞ
## ## 6 a & maxi j1" aij; eai"2$ %

< 1 for x between ci and cik , is verified. Therefore the constant
solution fcik ; cik ; . . .g is locally attractive for the rank-type Eq. (14), where cik ¼ k-rankfcig is the kth-largest of the carrying
capacities of the p individual Ricker maps.

Example 3.4. Assume "1/4 < ai < 3/4 for 1 6 i 6 p. Then the fixed point ri ¼ ai þ 1
2 "

ffiffiffiffiffiffiffiffiffiffiffiffi
ai þ 1

4

q
of fi(x) = (x " ai)2 is an attracting

fixed point. Note that each fixed point lies in the interval 0; 14
' (

.
We can apply Corollary 3.2 to the difference equation

xn ¼ k-rank ðxn"1 " a1Þ2; ðxn"2 " a2Þ2; . . . ; ðxn"p " apÞ2
n o

: ð15Þ

Note that for each j and for x between x = ri and x ¼ 1
4 ; f

0
i ðxÞ is increasing from f 0i ðriÞ ¼ 1"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ai þ 1

p
to f 0i

1
4

) (
¼ 2 1

4 " ai
) (

, so that

jf 0i ðxÞj 6 max 1"
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ai þ 1

p## ##; 2 1
4 " ai
) (## ##$ %

< 1, satisfying the main hypothesis of Corollary 3.2. It follows that the constant
solution xn ¼ rik , the kth-largest of the p individually attracting fixed points of the fi, is locally attractive for the rank-type
Eq. (15).

4. Non-hyperbolic case

Far less is known in the non-hyperbolic case, where the restriction that a < 1 is relaxed. Because of the lack of hyperbo-
licity, convergence cannot be expected for general initial conditions. In many cases the solution becomes periodic for suffi-
ciently large n. A particularly rich case concerns the difference equation

xn ¼ k-rankf"xn"1 þ b1; . . . ;"xn"p þ bpg: ð16Þ

Remark. First define ik to be the index of the kth-largest bi, namely bik ¼ k-rank fb1; . . . ; bpg. Then it is straightforward to
check that (16) has a fixed-point solution x1 ¼ x2 ¼ ' ' ' ¼ 1

2bik .
With more assumptions, many more periodic solutions can be generated. We say that a solution has prime period s if it is

periodic with period s and with no lower period.

Proposition 4.1. Assume that the b1, . . . , bp in (16) are ordered as

bi1 P ' ' ' P bik"1 > bik > bikþ1 P ' ' ' P bip :

That is, assume that bik , the kth-largest bi, is not repeated in the list. Then there are uncountably many solutions of (16) with prime
period 2ik.

The solutions can be described as follows. Define

b ¼ 1
2
minfbik"1 " bik ; bik " bikþ1g:

(If k = 1, set b ¼ 1
2 ðbik " bikþ1 Þ; if k = p, set b ¼ 1

2 ðbik"1 " bik Þ). Define the p initial conditions x1, . . . , xp to be any p consecutive
elements of the sequence

x1; . . . ; x2ik ; x1; . . . ; x2ik ; . . .

where

x1 ¼
bik

2
þ b1;

..

.

xik ¼
bik

2
þ bik ;

xikþ1 ¼
bik

2
" b1;

..

.

x2ik ¼
bik

2
" bik

and such that the bi satisfy jbij < b. For each n,

xn ¼ k-rank "
bik

2
" bj1 þ b1; . . . ;"

bik

2
" bjp þ bp

! "
:
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Since bik"1 " 2b P bik P bikþ1 þ 2b, we have

"
bik

2
þ bik"1 " 2b P "

bik

2
þ bik P "

bik

2
þ bikþ1 þ 2b;

so that the kth largest of the set is "xn"ik þ bik . This verifies that each xn defined by the difference Eq. (16) follows the same
pattern, and satisfies xn ¼ xn"2ik . If the b1, . . . , bk are chosen all distinct, then the solution is not periodic of any lower period,
so its prime period is 2ik.

Remark. In addition to the solutions of prime period 2ik, there are solutions of prime period 2ik/d for any odd natural
number d dividing evenly into ik. They are special cases of the above solutions obtained by setting bs+1 = "b1, bs+2 = "b2, . . . ,
b2s = "bs, b2s+1 = b1, . . . , where s = ik/d.

Note that difference equation (16) is the additive version of the multiplicative difference equation

xn ¼ k-rank
A1

x1
; . . . ;

Ap

xp

! "
; ð17Þ

where Ai > 0. If we set yi = log xi as in Example 2.7, we recover the form (16). The monotonicity of the logarithm implies that
ranks of the xi and yi are unchanged. Eq. (17) in the case k = 1 is the subject of extensive conjectures of Ladas [9] and Grove
and Ladas [7]. In the following, we extend Ladas’s max-type conjectures to the context of general rank-type equations. We
state them in additive form (16), though they are easily translated to the multiplicative form (17).

Definition. The solution {xn} of a difference equation is called eventually periodic with period p if there exists an integer N > 0
such that xn+p = xn for all nP N.

Conjecture 4.2. Consider the difference equation (16) where the b1, . . . , bp are ordered as

bi1 > ' ' ' > bik"1 > bik > bikþ1 > ' ' ' > bip ;

that is, bik is the kth largest of distinct bi. Then all solutions are eventually periodic with period 2ik. (The prime period may be a
divisor of 2ik.)

For example, the case p = 3, k = 2 concerns the equation

xn ¼ medianf"xn"1 þ b1;"xn"2 þ b2;"xn"3 þ b3g: ð18Þ

The conjecture holds that for any initial conditions, the solution is eventually periodic with period

2 if b2 < b1 < b3 or b3 < b1 < b2;

4 if b1 < b2 < b3 or b3 < b2 < b1;

6 if b1 < b3 < b2 or b2 < b3 < b1:

The requirement in Conjecture 4.2 that bik is nonrepeating is important. If this requirement is lifted, although eventual peri-
odicity is still expected, the formula for the period is more complicated. Continuing the case p = 3, k = 2 we have:

Proposition 4.3. Uncountably many solutions of the Eq. (18) exist with prime periods

2 if b1 ¼ b3 – b2;

3 if b1 ¼ b2 – b3;

4 if b1 ¼ b2 ¼ b3;

5 if b2 ¼ b3 – b1:

Proof. It is easily checked that the following sequences satisfy the difference Eq. (18).

Case 1: b1 = b3 – b2. For any b, define

x1 ¼ b1

2
þ b;

x2 ¼ b1

2
" b:

Then x1, x2, x1, x2, . . . is a solution.
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Case 2: b1 = b2 – b3. Set

x1 ¼ b1

2
þ b;

x2 ¼ b1

2
þ b;

x3 ¼ b1

2
" b;

where b is any number between 0 and (b3 " b1)/2. Then x1, x2, x3, x1, x2, x3, . . . is a solution.
Case 3: b1 = b2 = b3. For any b, set

x1 ¼ b1

2
þ b;

x2 ¼ b1

2
þ b;

x3 ¼ b1

2
" b;

x4 ¼ b1

2
" b:

Then x1, x2, x3, x4, x1, x2, x3, x4, . . . is a solution.
Case 4: b2 = b3 – b1. Define

x1 ¼ b1

2
þ b;

x2 ¼ b1

2
þ b;

x3 ¼ b1

2
þ b;

x4 ¼ b1

2
" b;

x5 ¼ b1

2
" b;

where b is any number between 0 and (b1 " b2)/2. Then x1, x2, x3, x4, x5, x1, x2, x3, x4, x5, . . . is a solution, completing the
proof. h

We conjecture that the periodic solutions found above represent all possible periods for the p = 3, k = 2 rank-type equa-
tion. More precisely, we propose the following:

Conjecture 4.4. Consider the difference equation (18). Then all solutions are eventually periodic, with period

2 if b2 < b1 < b3 or b3 < b1 < b2;

4 if b1 < b2 < b3 or b3 < b2 < b1;

6 if b1 < b3 < b2 or b2 < b3 < b1;

2 if b1 ¼ b3 – b2;

3 if b1 ¼ b2 – b3;

4 if b1 ¼ b2 ¼ b3;

5 if b2 ¼ b3 – b1:

See [19] for a proof of analogous results for the p = 3, k = 1 case. We expect that similar methods may suffice to prove
Conjecture 4.4.
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