5.3.10. (a)

\[M(t) = \sum_{k=1}^{\infty} e^{tk} p(1-p)^{k-1} \]
\[= \frac{p}{1-p} \sum_{k=1}^{\infty} ((1-p)e^t)^k \]
\[= \frac{p}{1-p} \left(\frac{1}{1 - (1-p)e^t} - 1 \right) \]
\[= \frac{1}{1 - (1-p)e^t}, \text{ if } (1-p)e^t < 1. \]

(b)

\[M(t) = \sum_{n=2}^{\infty} \left(\frac{n-1}{1} \right) e^{nt} p^2(1-p)^{n-2} \]
\[= p^2e^{2t} \sum_{n=2}^{\infty} ((1-p)e^t)^{n-2} \]
\[= p^2e^{2t} \cdot \frac{d}{du} \left[\sum_{u=1}^{\infty} u^{n-1} \right]_{u=(1-p)e^t} \]
\[= p^2e^{2t} \cdot \frac{d}{du} \left[\frac{1}{1-u} \right]_{u=(1-p)e^t} \]
\[= p^2e^{2t} \cdot \left[\frac{1}{(1-u)^2} \right]_{u=(1-p)e^t} \]
\[= \frac{p^2e^{2t}}{(1-(1-p)e^t)^2}, \text{ if } (1-p)e^t < 1. \]

(c) The time \(T \) until the second success is the sum of the time \(T_1 \) until the first success and the time \(T_2 \) strictly after the first success until the second success, and these two times are independent. Thus, \(M_T(t) = M_{T_1}(t) \cdot M_{T_2}(t) \). Both of the two m.g.f.'s on the right are as in part (a). Their product agrees with the result in part (b), thus \(T \) must have the desired negative binomial distribution.

5.4.4. The sample mean has the value \(\bar{X} = 288.1 \) for the \(n = 22 \) students in this data set. If the chance of observing a mean score this high is very small under the assumption that \(\mu = 256 \), then we conclude that \(\mu \) is probably higher than 256. We have

\[P[\bar{X} \geq 288.1] = P[Z \geq \frac{288.1 - 256}{29/\sqrt{22}} = 5.19]. \]

This probability is nearly zero, so we can be very sure that \(\mu \) exceeds 256.

5.4.5. We require

\[.95 = P[\bar{X} - c < \mu < \bar{X} + c] = P[-c < \bar{X} - \mu < c] = P\left[\frac{-c}{\sigma/\sqrt{n}} < Z < \frac{c}{\sigma/\sqrt{n}} \right], \]

where \(Z \) is standard normal. From the normal table,

\[1.96 = \frac{c}{\sigma/\sqrt{n}} = \frac{c}{2/6} \Rightarrow c = \frac{1}{3}, 1.96 = .653. \]
(b) By the same reasoning as in part (a),

\[M_Y(t) = \frac{1}{6} e^t + \frac{1}{6} e^{2t} + \frac{1}{6} e^{3t} + \frac{1}{3} e^{4t} + \frac{1}{12} e^{5t} + \frac{1}{12} e^{6t}. \]

(c) Again by the reasoning of (a),

\[M(t) = \sum_{i=1}^{n} p_i e^{z_i t}. \]

(d) The m.g.f. of the sum is the product of the individual m.g.f.'s. Hence,

\[M_{X+Y}(t) = M_X(t)M_Y(t) \]

\[= \left(\frac{1}{12} e^{-2t} + \frac{1}{6} e^{-t} + \frac{1}{4} + \frac{1}{6} e^{t} + \frac{1}{6} e^{2t} + \frac{1}{12} e^{3t} \right) \]

\[\times \left(\frac{1}{6} e^{4t} + \frac{1}{6} e^{3t} + \frac{1}{3} e^{2t} + \frac{1}{12} e^{t} + \frac{1}{12} e^{-t} \right) \]

\[= \frac{1}{72} e^{-t} + \frac{1}{6} e^{0} + \frac{1}{12} e^{t} + \frac{1}{12} e^{2t} + \frac{1}{24} e^{3t} + \frac{25}{36} e^{4t} + \frac{23}{144} e^{5t} + \frac{1}{144} e^{6t} + \frac{9}{144} e^{7t} + \frac{3}{144} e^{8t} + \frac{1}{144} e^{9t}. \]

By part (c), the coefficients are the probabilities, and the coefficients of \(t \) in the exponents are the states they are associated with. Reducing the fractions, states \(-1, 0, 1, \ldots, 9\) respectively have probability masses \(1/72, 1/24, 1/12, 5/36, 25/144, 3/16, 23/144, 1/9, 1/16, 1/48, 1/144\).

5.4.2. If \(R \) denotes the length of the radial vector, then

\[P[|R| \geq 2.14] = P[R^2 \geq 4.6] = P[X^2 + Y^2 \geq 4.6]. \]

But the random variable \(X^2 + Y^2 \) has the \(\chi^2(2) \) distribution, hence this probability is about \(.1 \).

5.4.8. The sample standard deviation is \(s = 5.17 \). The observed value of the random variable \((n-1)s^2/\sigma^2 \) is \(19 \cdot (5.17)^2/16 = 31.74 \) which is an observed value from the \(\chi^2(19) \) distribution if the true variance is \(16 \). Since this number is so large (less than 5% likely), we have fairly strong evidence that the true variance is more than \(16 \).

5.4.13. As in Exercise 12, since we can write the transformation as \(Y = AX \), where

\[Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}, \]

we can conclude that \(Y \) is bivariate normal with the following mean vector and covariance matrix:

\[\mu_Y = A\mu_X = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 4 \\ -1 \end{bmatrix} = \begin{bmatrix} -5 \\ -1 \end{bmatrix}, \]

\[\Sigma_Y = A\Sigma_X A' = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 3 \\ 3 & 3 \end{bmatrix}. \]

Note that \(\rho = 3/(\sqrt{7} \cdot \sqrt{3}) = 3/\sqrt{21} \).