4.3. Differentiation of Logarithmic and Exponential Functions

Derivative of $\ln x$

$$\frac{d}{dx}(\ln x) = \frac{1}{x} \quad \text{for} \quad x > 0$$

Example

Differentiate the function $f(x) = x \ln \sqrt{x}$.
Differentiation of Logarithmic Functions

The Chain Rule for Logarithmic Functions

If $u(x)$ is a differentiable function of x, then

$$
\frac{d}{dx}[\ln u(x)] = \frac{u'(x)}{u(x)}
$$

Example

Differentiate the function $f(x) = \ln(x^2 + 1)$.
Differentiation of Logarithmic Functions

Example
Differentiate the function $f(x) = \ln(x^3 - 5x + 4)$.
Example
Find an equation for the tangent line to $y = x + \ln x$ at the point where $x = e$.
Differentiation of Exponential Functions

The Derivative of the Exponential Function

\[\frac{d}{dx}(e^x) = e^x \quad \text{for every real number } x \]

Example

Differentiate the function \(f(x) = \frac{e^x}{x} \).
The Chain Rule for Exponential Functions

If \(u(x) \) is a differentiable function of \(x \), then

\[
\frac{d}{dx} e^{u(x)} = e^{u(x)} u'(x)
\]

Example

Differentiate the function \(f(x) = xe^{2x} \).
Example

Find the largest and smallest values of the function $F(x) = e^{x^2-2x}$ over the closed interval $0 \leq x \leq 2$.
Logarithmic Differentiation

Differentiating a function that involves products, quotients, or powers can often be simplified by first taking the logarithm of the function.

Step 1. Take logarithms of both sides of the expression for \(f(x) \) and simplify the resulting equation.

Step 2. Use the chain rule to differentiate both sides.

Step 3. Multiply both sides with \(f(x) \) to get \(f'(x) \).
Logarithmic Differentiation

Example

Use logarithmic differentiation to find the derivative of

\[f(x) = \sqrt[4]{\frac{2x + 1}{1 - 3x}}. \]
Logarithmic Differentiation

Example

Use logarithmic differentiation to find the derivative of

\[f(x) = \frac{e^{3x}(x^2 + 5)}{(1 - x)^5}. \]