1.6. One-sided Limits and Continuity

One-sided Limit
If \(f(x) \) approaches \(L \) as \(x \) tends toward \(c \) from the left \((x < c)\), we write
\[
\lim_{{x \to c^-}} f(x) = L.
\]
Likewise, if \(f(x) \) approaches \(M \) as \(x \) tends toward \(c \) from the right \((x > c)\), then
\[
\lim_{{x \to c^+}} f(x) = M.
\]

Example
Find \(\lim_{{x \to 2^-}} f(x) \) and \(\lim_{{x \to 2^+}} f(x) \) for the function
\[
f(x) = \frac{x^2 + 3}{x - 2}
\]
One-sided Limit

Example

Find \(\lim_{x \to -1^-} f(x) \) and \(\lim_{x \to -1^+} f(x) \) for the function

\[
f(x) = \begin{cases}
 2 & \text{if } x < -1 \\
 \frac{2}{x - 1} & \text{if } x \geq -1 \\
 x^2 - x & \text{if } x \geq -1
\end{cases}
\]
Existence of a Limit

Theorem

The two-sided limit \(\lim_{x \to c} f(x) \) exists if and only if the two one-sided limits \(\lim_{x \to c^-} f(x) \) and \(\lim_{x \to c^+} f(x) \) both exist and are equal, and then

\[
\lim_{x \to c} f(x) = \lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x)
\]

Example

Determine whether \(\lim_{x \to 1} f(x) \) exists, where

\[
f(x) = \begin{cases}
2x + 1 & \text{if } x < 1 \\
-x^2 + 2x + 2 & \text{if } x \geq 1
\end{cases}
\]
Continuity

A function f is **continuous** at c if all three of these conditions are satisfied:

a. $f(c)$ is defined
b. $\lim_{x \to c} f(x)$ exists
c. $\lim_{x \to c} f(x) = f(c)$

If $f(x)$ is not continuous at c, it is said to have a **discontinuity** there.

Example

Decide if $f(x) = x^3 - x^2 + x - 4$ is continuous at $x = 0$.
Continuity

Example

Decide if \(f(x) = \frac{2x + 5}{2x - 4} \) is continuous at \(x = 2 \).
Continuity of Polynomials and Rational Functions

A polynomial or a rational function is continuous wherever it is defined.

Example

List all values of x for which $f(x)$ is not continuous

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2}$$
Example

Decide if \(f(x) = \begin{cases}
 x + 1 & \text{if } x < 0 \\
 x - 1 & \text{if } x \geq 0
\end{cases} \) is continuous at \(x = 0 \).
Example
Find the value of the constant A such that the function

$$f(x) = \begin{cases}
1 - 2x & \text{if } x < 2 \\
Ax^2 + 2x - 3 & \text{if } x \geq 2
\end{cases}$$

will be continuous for all x.
Continuity on an Interval

A function \(f(x) \) is said to be continuous on an open interval \(a < x < b \) if it is continuous at each point \(x = c \) in that interval. Moreover, \(f \) is continuous on the closed interval \(a \leq x \leq b \) if it is continuous on the open interval \(a < x < b \) and

\[
\lim_{x \to a^+} f(x) = f(a) \quad \text{and} \quad \lim_{x \to b^-} f(x) = f(b)
\]

Example
Discuss the continuity of

\[
f(x) = \begin{cases}
 x^2 - 3x & \text{if } x < 2 \\
 4 + 2x & \text{if } x \geq 2
\end{cases}
\]
on the open interval \(0 < x < 2 \) and the closed interval \(0 \leq x \leq 2 \).
The intermediate value property

If $f(x)$ is continuous on the interval $a \leq x \leq b$ and L is a number between $f(a)$ and $f(b)$, the $f(c) = L$ for some number c between a and b. In other words, a continuous function attains all values between any two of its values.

Example

Show that the equation $\sqrt[3]{x} = x^2 + 2x - 1$ must have at least one solution on the interval $0 \leq x \leq 1$.