1. [15] Suppose A is an arbitrary 5×2 matrix.

 (a) Consider the elementary row operation that replaces row 4 with itself plus $2 \times$ Row 1. What is the corresponding elementary matrix E?

 (b) Consider the elementary row operation that interchanges rows 2 and 5. What is the corresponding elementary matrix F?

 (c) Consider the elementary row operation that scales row 2 by $\frac{1}{2}$. What is the corresponding elementary matrix G?

2. [20] Suppose A, B, C, D, and X are square $n \times n$ matrices and that satisfy the equation $A + BX = C + DX$.

 (a) What matrix (some combination of A, B, C, and D) needs to be invertible in order that we can solve this equation for X?

 (b) Assuming the matrix from part (a) is invertible, solve for X.

3. [30 pts] Assume that $A = [a_1 \ a_2 \ a_3 \ a_4 \ a_5]$ and $B = [b_1 \ b_2 \ b_3 \ b_4 \ b_5]$ are row equivalent, where

 $$\begin{bmatrix}
 1 & 2 & -2 & 0 & 7 \\
 -2 & -3 & 1 & -1 & -5 \\
 -3 & -4 & 0 & -2 & -3 \\
 3 & 6 & -6 & 5 & 1
 \end{bmatrix}, \quad
 \begin{bmatrix}
 1 & 0 & 4 & 0 & -3 \\
 0 & 1 & -3 & 0 & 5 \\
 0 & 0 & 0 & 1 & -4 \\
 0 & 0 & 0 & 0 & 0
 \end{bmatrix}$$

 (a) Determine a basis for Col A.

 (b) Determine a basis for Row A.

 (c) Determine rank A.

 (d) Determine $\dim \text{Nul } A$.

 (e) Fill in the blanks: Nul A is a _____ dimensional subspace of \mathbb{R}^k, where $k =$ _____.

4. [30] Let $B = \{b_1, b_2\}$ and $C = \{c_1, c_2\}$ be bases for \mathbb{R}^2, where

 $$b_1 = \begin{bmatrix}
 1 \\
 4
 \end{bmatrix}, \quad
 b_2 = \begin{bmatrix}
 1 \\
 1
 \end{bmatrix}, \quad
 c_1 = \begin{bmatrix}
 -1 \\
 8
 \end{bmatrix}, \quad
 c_2 = \begin{bmatrix}
 1 \\
 -5
 \end{bmatrix}$$

 (a) Calculate the change-of-coordinates matrix from B to C.

 (b) If $[x]_C = \begin{bmatrix}
 1 \\
 -1
 \end{bmatrix}$

 i. Determine $[x]_B$.

 ii. Determine x.

5. [20] Let H denote the subset of \mathbb{P}_3 (the vector space of all polynomials of degree at most 3) consisting of all polynomials of the form $p(t) = a + (a + b)t + bt^2$, where a, $b \in \mathbb{R}$.

 (a) Show that H is a subspace of \mathbb{P}_3.

 (b) Determine two vectors that span H.