1. [20] Calculate the general solution of the following system.

\[
\begin{align*}
5x_1 - 9x_2 + 18x_4 &= -7 \\
3x_2 - 4x_4 &= 2 \\
6x_2 - 8x_4 &= 4
\end{align*}
\]

2. [15] For each matrix below determine whether its columns form a linearly independent set. Give reasons for your answers. (Make as few calculations as possible.)

\[
A = \begin{bmatrix}
-4 & 12 \\
1 & -3 \\
-3 & 8
\end{bmatrix}, \quad B = \begin{bmatrix}
2 & 7 & 0 \\
-4 & -6 & 5 \\
6 & 13 & -3
\end{bmatrix}, \quad C = \begin{bmatrix}
1 & 5 & -3 & 2 \\
0 & 4 & -9 & 18 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

3. [15] For each matrix in Problem 2 determine if the columns of the matrix span \(\mathbb{R}^3\). Give reasons for your answers. (Again, make as few calculations as possible.)

4. [15] Let \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) be a linear transformation such that

\[
T(e_1) = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}, \quad T(e_2) = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}, \quad T(e_3) = \begin{bmatrix} 0 \\ -7 \\ 8 \end{bmatrix}
\]

(a) Determine the standard matrix of \(T \).
(b) Determine if \(T \) is a one-to-one transformation. Mention an appropriate theorem/result to justify your answer.
(c) Provide a formula for \(T(x_1, x_2, x_3) \).

5. [15] Determine the standard matrix of the linear transformation \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) that reflects points through the line \(x_2 = x_1 \) and then reflects the result through the line \(x_2 = 0 \).

6. [15 pts] Consider the linear system \(Ax = b \), where

\[
A = \begin{bmatrix}
1 & 0 & 0 \\
2 & 0 & 1 \\
0 & -1 & 0
\end{bmatrix}, \quad b = \begin{bmatrix}
1 \\
1 \\
-1
\end{bmatrix}
\]

(a) Show that \(A \) is invertible
(b) Calculate \(A^{-1} \).
(c) Use part (b) to solve \(Ax = b \)

7. [15] Mark each statement as True (T) or False (F). You do not have to justify your answer.

(a) In some cases it is possible for six vectors to span \(\mathbb{R}^5 \).
(b) If \(A \) is an \(m \times n \) matrix and if the equation \(Ax = b \) has a solution for some \(b \), then the columns of \(A \) span \(\mathbb{R}^m \).
(c) If a system of linear equations has two different solutions, then it has infinitely many solutions.
(d) Every matrix is row equivalent to a unique matrix in echelon form.
(e) If \(v_1 \) and \(v_2 \) span a plane in \(\mathbb{R}^3 \) and if \(v_3 \) is not in that plane, then \(\{v_1, v_2, v_3\} \) is a linearly independent set.