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What are Thin Fluid Films?

Thin fluid films are:

Tear film on the exterior surface of a contact lens
Fluid layers thickness is much less than the lateral
extent
Nanometer to micrometer in thickness

Another is the contact lens that mathematically is
represented as porous layers (ref. Raad and
Sabau)

***** Goal of the Study *****

The most common disease, Dry Eye Sydrome in eye care
industry

Dry Contact Lens that causes irritation on the eye.

Image courtesy of: http://www.emedicinehealth.com
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Introduction to Tear Films

Image courtesy of:
http://www.naturecoasteye.com

Fluid Layers on the eye

Oil Layer
60.3+/- 2.5 nm [1]
Watery Layer (’pre-lens’ film)
4 - 7µm [2]
Mucus Layer
2 - 7µm [2]

Porous layers

Contact lens
average 30µm [3]

References:
1. D.Sullivan, D. Dartt, M. Meneray
2. Nichols, Chiappino, Dowson, M.D
3. P.E. Raad and A.S. Sabau
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Construct Dry Eye Model
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Introduction to Thin Films

Identify the behavior of thin flud films with respect to time

Factors: gravity, pressure of a porous layer, the presence of
a porous layer underneath the thin liquid film and more...

NOTE:

We examine a modification of the Braun & Fitt (BF) Equation

Standard Case :
** non-slip on the pore boundary

Beavers - Joseph Boundary Condition Case (BJ) :
** slip on the pore boundary

Le Bars & Worster Boundary Condition Case (LW) :
** slip into the pore boundary
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Impact on the boundary

Courtesy of Kumnit Nong @2007 George Mason University
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Thin Film Evolution Equations

∂h

∂t
= − ∂

∂x

{
f (h) ∗

(
1

Ca

∂3h

∂x3
− Gy cos θ

∂h

∂x
+ Gx sin θ

)}
.

*** Note: Evaporation effect is not included ***

Standard Case

fStandard =
h3

3
+ Da(h + H)

Beavers-Joseph

fBJ =
h3

3
+

√
Da

α
h2 + Da (h + H)

Le Bars & Worster

fLW =
(h + δ)3

3
+ Da (h + H)
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Interests

Specific cases

1. Verification method, we compare data to the result of
BF equation
*by set Da= 0, and 1/α or δ = 0

fBF =
h3

3

2. Darcy-Weisbach coefficient (Da) effects

* Ratio of pore scale radius to film thickness

3. Slip of fluid velocity at the liquid/porous interface
*** α and δ

4. The gravity effect for G = 1
4

Specifically at θ = π
2 (up-right posistion)
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Numerical Method

Finite difference method

Spatial Derivatives Representation
Half-step scheme for third and forth
order derivative

Taylor series

One sided-derivative approximation
- boundary condition

Matlab Simulation

ODE solvers - ode23s, ode45

Kumnit Nong Advisor: Dr. Daniel M. Anderson —–***—–NSF-URCMThin Fluid Films over Thin Porous Layers



Numerical Method

Finite difference method

Spatial Derivatives Representation
Half-step scheme for third and forth
order derivative

Taylor series

One sided-derivative approximation
- boundary condition

Matlab Simulation

ODE solvers - ode23s, ode45

Kumnit Nong Advisor: Dr. Daniel M. Anderson —–***—–NSF-URCMThin Fluid Films over Thin Porous Layers



Numerical Method

Finite difference method

Spatial Derivatives Representation
Half-step scheme for third and forth
order derivative

Taylor series

One sided-derivative approximation
- boundary condition

Matlab Simulation

ODE solvers - ode23s, ode45

Kumnit Nong Advisor: Dr. Daniel M. Anderson —–***—–NSF-URCMThin Fluid Films over Thin Porous Layers



Main Result

Standard case vs. Braun Fitt Study

Time increases when Da= 0 vs. Da= 10−5, H= 100, and
G= 0
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Main Result - con’t

This movie is demonstrate the behavior of the surface of the
thin fluid film over time (t =100).
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Main Result - con’t

Standard Boundary Condition

Variation of Da and H= 100
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Main Result - con’t

Standard Boundary Condition

Variation of H and Da = 10−5
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Main Result - con’t

Beavers-Joseph Boundary Condition

Variation 1/α, Da= 10−5 and H= 100
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Main Result - con’t

Le Bars & Worster Boundary Condition

Variation δ, Da= 10−5, and H= 100
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Main Result - con’t

Standard case
G = 1

4 when time t is vary
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Main Result - con’t

The movie is demonstrate the effect of gravity G = 1
4 at θ = π

2

Da= 10−5, H= 100, and t = 100
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Main Result - con’t

Take a closer look when we compare it to G = 0 and vary Da
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Main Result - con’t

Now, we compare it to G = 0 and vary H
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Discussion

For all equations, the simulated models of the films
start to RUPTURE as ANY of the following happen:

time increased

the Darcy number(Da) increases
Note : ratio of pore scale radius of contact lens to
the fluid film thickness

the contact lens thickness(H) increases

the length of slip impact on the pore
boundary(1/α) is increasing

the depth of slip impact into the pore boundary(δ)
is getting deeper

the gravity(G ) is slower the rate of film rupture.
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Conclusion

Why do these models help people like you and me?

It helps us understand that both theoretical and practical
behavior of the fluid films when contact lens is present.

Also, the pore radius, thickness, and slip impact of the
permeable lens speed up the rate of film thinning. These
show that with an improper use of contact lens, it leads to
dry eyes.

The gravity increases the lifetime of the film, but all other
effects still play a major role on rupture of the film.

Using the right properties of contact lens can maximize
the lifetime of the fluid films.

Image courtesy of www.targetwoman.com
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Future Works

Improve the numerical scheme,
using Spectral Method

May also convert to FORTRAN
code for faster computation

Optimization on the effect of
variables to the realistic value
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Thank You

Dr. Daniel M. Anderson

GMU-URCM Team and Staff

NSF - CSUMS Program grant
NSF DMS-0639300.

GMU - Mathematics Department

College of William and Mary
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