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What are Thin Fluid Films?

o Thin fluid films are: Sl
o Tear film on the exterior surface of a contact lens
o Fluid layers thickness is much less than the lateral
extent

o Nanometer to micrometer in thickness

@ Another is the contact lens that mathematically is

represented as porous layers (ref. Raad and
Sabau)
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What are Thin Fluid Films?

o Thin fluid films are:

o Tear film on the exterior surface of a contact lens

o Fluid layers thickness is much less than the lateral
extent

o Nanometer to micrometer in thickness

@ Another is the contact lens that mathematically is

represented as porous layers (ref. Raad and
Sabau)

*xAE* Goal of the Study *****

s mondhemmostséommon disease, Dry Eye Sydrome in eye care
industry

o Dry Contact Lens that causes irritation on the eye. S

— I_migs’_courtesy of: http://www.emedicinehealth.com « = -EE
3 = -
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Introduction to Tear Films

o Fluid Layers on the eye

e Oil Layer
60.3+/- 2.5 nm [1]

= . Watery Layer ('pre-lens’ film)

Large Lacrimal Gland Tear Chemistry

;' £\ 4 - 7um [2]
< B gl e Mucus Layer

\ 2 - 7um [2]
Water

Mucus

% / "‘_"f‘ 7 "

Meibomion Glands
e R o A

Image courtesy of:
http://www.naturecoasteye.com
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Introduction to Tear Films

o Fluid Layers on the eye

e Oil Layer
60.3+/- 2.5 nm [1]

# o Watery Layer (‘pre-lens’ film)

Large Lacrimal Gland Tear Chemistry

¢4 4 - 7um [2]
\e“” gl e Mucus Layer
2-7um [2]
Water

o Mu:us o Porous layers
LA o Contact lens
average 30um-[3]
Meibomion Glands
S——— A N

References:
Image courtesy of: 1. D.Sullivan, D. Dartt, M. Meneray
http://\ivww.naturecoasteye.com 2. Nichols, Chiappino, Dowson, M.D-
e 3. P.E. Raad and A.S. Sabau —
- - - :
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Construct Dry Eye Model

®orous Layer Model _g

Da = Darcy Number
H = Porous Layer

G = Gravity

L = Model halt- length

Upper Lid

h(xt)

l

Pol-os Laver Cornea Smface

o e — 2 e
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Introduction to Thin Films

@ Identify the behavior of thin flud films with respect to time

@ Factors: gravity, pressure of a porous layer, the presence of
a porous layer underneath the thin liquid film and more...

il B
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Introduction to Thin Films

@ Identify the behavior of thin flud films with respect to time

@ Factors: gravity, pressure of a porous layer, the presence of
a porous layer underneath the thin liquid film and more...

NOTE:
We examine a modification of the Braun & Fitt (BF) Equation

o Standard Case :
** non-slip on the pore boundary

. o _Beayers - Joseph Boundary Condition Case (BJ) :
** slip on the pore boundary

o Le Bars & Worster Boundary Condition Case (LW) :
= **¢lip into the pore boundary

-I.__-_

.
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Impact on the boundary

"Thin Film Model on Porous Layef

Standard Beavers-Joseph Le Bars & Worster

Boundary Conditons:
e Standard

e Beavers- Joseph
— | e Bars & Worster

H= Porous Layer thickness

., Fluid velocity

. .umnit Nong ©2007 George Mas

=t - = - . > e —
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Thin Film Evolution Equations

3
Oh 0 1 93h Oh !
—87 == —&({f(h)*(cjaM—GyCOS@&(-l—GXSInQ)}.

*** Note: Evaporation effect is not included ***

il B

- - : =
= = - ;
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Thin Film Evolution Equations

oh 0 1 93h Oh
_ = —— —— — 0— inf | 5.
T I {f(h) * (Ca 53 Gy cos oM + Gxsin )}
*** Note: Evaporation effect is not included ***

o Standard Case

3

h
fStandard — ? e Da(h i H)
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Thin Film Evolution Equations
3
oh 0 1 93h oh !
o 5 {f(h) * <C30x3 = Gycosﬁa + stm9)}.

*** Note: Evaporation effect is not included ***
o Standard Case

h3
fStandard — ? i Da(h = H)
o Beavers-Joseph
h3=-%P3
AR e = 3 o Th2+ Da (h + H)
-.';- - | ‘-‘-. . g
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Thin Film Evolution Equations
3
oh 0 1 93h oh !
o 5 {f(h) * <C30x3 = Gycosﬁa + stm9)}.

*** Note: Evaporation effect is not included ***
o Standard Case

h3
fStandard = ? i Da(h 4F H)
o Beavers-Joseph
h3 Da
AR e = 3+gh2+Da(h+H)
o Le Bars & Worster ;
- ht 83 i -9
= Ea fiw = ( g ) + Da(h+ H) : _ =
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Interests

Specific cases

1. Verification method, we compare data to the result of
BF equation
*by set Da= 0, and 1/a or 6 = 0

h3
; for = 3
=
o
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Interests

Specific cases

1. Verification method, we compare data to the result of
BF equation
*by set Da= 0, and 1/a or 6 = 0

h3
: for = 3
-
| 2. Darcy-Weisbach coefficient (Da) effects
* Ratio of pore scale radius to film thickness
oo
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Interests

Specific cases

1. Verification method, we compare data to the result of
BF equation
*by set Da= 0, and 1/a or 6 = 0

h3
for = 3
2. Darcy-Weisbach coefficient (Da) effects
* Ratio of pore scale radius to film thickness

3. Slip of fluid velocity at the liquid/porous interface
*** o and §
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Interests

Specific cases

1. Verification method, we compare data to the result of
BF equation
*by set Da= 0, and 1/a or 6 = 0

h3

fer = 3

= 2. Darcy-Weisbach coefficient (Da) effects
* Ratio of pore scale radius to film thickness

3. Slip of fluid velocity at the liquid/porous interface
*** o and § =

- 4. The gravity effect for G = %

™

-———m Specifically at # = 5 (up-right posistion)
."‘:'.'"._-".‘_‘:1- s m
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Numerical Method

3
@ Finite difference method

o Spatial Derivatives Representation

o Half-step scheme for third and forth
order derivative

e
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Numerical Method

B

@ Finite difference method

: o Spatial Derivatives Representation
\ J o Half-step scheme for third and forth
/ order derivative

- o Taylor series
o One sided-derivative approximation

’ - boundary condition

i
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Numerical Method
3

@ Finite difference method

: o Spatial Derivatives Representation
\ . o Half-step scheme for third and forth
/ order derivative

- o Taylor series
o One sided-derivative approximation

’ - boundary condition

o Matlab Simulation
o ODE solvers - ode23s, ode45

= g
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Main Result

Standard case vs. Braun Fitt Study

- o Time increases when Da= 0 vs. Da= 10—°,
ol G=0

Standard Case in Time
(Da=0 Vs Da=10°)

== H=100, 1= 100, Da= 109

Surface h(x,t)

Space Grid x
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Standard Case in Time
(Da=0 Vs Da=10")
T T

Surface h{x,t)

——H=100,1=10, Da=0
== H=100, 1= 10, Da= 10°°
——H=100, 1=100, Da=0
== H=100, =100, Da=10 ¥

0 T
Space Grid x
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Main Result - con't

@ This movie is demonstrate the behavior of the surface of the
thin fluid film over time (t =100).

fall-
i

= " -
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Main Result - co

@ Variation of Da and H= 100

Standard LogLog Plot in Variation of Da
Time =100

A ; \\ s
——H=100, Da= 109
|~ H=100, Da= 10

e s
Kumnit Nong Ad

visor: Dr. Daniel M. Anderson —***——NSF-U  Thin Fluid Films over Thin

Porous Layers



Main Result - co

ndard Boundary Condition

" o Variation of H and Da = 10~2

Standard LogLog Plot in Variation of H
(Da=0 Vs. Da= 10 with Time= 100)
- T T

——Da=0,H=0
——Da=109 H=20
—pa=10% H=60
— Da=10" H=100

S

Kumnit Nong Advisor:



ain Result - co

vers-Joseph Boundary Condition

- e Variation 1/a, Da= 10> and H= 100

" Beavers-Joseph LogLog Plot in Variation of 1/a
(H=100 & Time= 100)

—Da=0,1/a=0
—Da=10" 1z =0

—pa=10® 1e=10
—— Da=10"%, /a =100

S E— _ _ Npes— o -
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ain Result - co

ars & Worster Boundary Condition

e Variation §, Da= 107°, and H= 100

Le Bars-Worster LogLog Plot in Variation of &
(H =100 & Tl_me =100)

e T T T AT ——

T T

—Do=0, # =0
——pa=10%, 3 =0
—Da=10%, 3 =107
——pa=10"* 3 =1

. — - : - T s r—
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Main Result - con't
o Standard case
G = % when time t is vary

1
-

Standard Case with Gravitational{G)

: over *‘I‘ime :

——G= 1/, Da=10", H=100, t=1
——G=1#,Da= 107, H=100,1=6
——G=1#, Da=10", H=100, 1= 10
~—@=1M, Da=10", H=100,1=40
G=1#, Da=10", H=100, 1=100

iyt ©

& L 1
5 7] E [] L} (1]

Space Grid x
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Main Result - con't

.

The movie is demonstrate the effect of gravity G = % atf =75

e Da= 10~°, H= 100, and t = 100

- i
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Main Result - con

t

-
- - v

o Take a closer look when we compare it to G =0 and vary Da =
%

Minimum at the bottom of tear film

A —— I |

00, Da=107,G=0
00, Da=10"7, G=1i4
00, Da=10" G=0
H=100, Da= 10", G=1/4
H=100, Da=10*, G=10
-==Hz100, Da= 10*, G=1/4

Standard LoglLog Plot with Gravitational

Varitation of Da

s
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Main Result - con't

= o Now, we compare it to G =0 and vary H

Standard LogLog Plot with Gravitational
/ i liC (H)

m_ Minimum at the bottom of tear film

—Da=10", H=20,G=0
—==Da= 10", H=20, G=1/4
——De=10",H=60,G=0
—~-=Da=10¥, H=60, G=1/4
~Da= 10", H=100, G= 0
-~ Da=10", H=100, G=1/4
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Discussion

For all equations, the simulated models of the films
start to RUPTURE as ANY of the following happen:

@ time increased

TN T UG ey

i
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Discussion

For all equations, the simulated models of the films
start to RUPTURE as ANY of the following happen:

@ time increased

o the Darcy number(Da) increases
Note : ratio of pore scale radius of contact lens to
the fluid film thickness

AR .

=
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Discussion

For all equations, the simulated models of the films
start to RUPTURE as ANY of the following happen:

@ time increased

o the Darcy number(Da) increases
Note : ratio of pore scale radius of contact lens to
the fluid film thickness

o the contact lens thickness(H) increases

AR .

=
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Discussion

For all equations, the simulated models of the films
start to RUPTURE as ANY of the following happen:

@ time increased

o the Darcy number(Da) increases
Note : ratio of pore scale radius of contact lens to
the fluid film thickness

o the contact lens thickness(H) increases

@ the length of slip impact on the pore
boundary(1/«) is increasing
S <X G
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Discussion

For all equations, the simulated models of the films
start to RUPTURE as ANY of the following happen:

@ time increased

o the Darcy number(Da) increases
Note : ratio of pore scale radius of contact lens to
the fluid film thickness

o the contact lens thickness(H) increases

@ the length of slip impact on the pore
boundary(1/«) is increasing

§ A ES g  the depth of slip impact into the pore boundary(d)

is getting deeper
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Discussion

For all equations, the simulated models of the films
start to RUPTURE as ANY of the following happen:

@ time increased

o the Darcy number(Da) increases
Note : ratio of pore scale radius of contact lens to
the fluid film thickness

o the contact lens thickness(H) increases

@ the length of slip impact on the pore
boundary(1/«) is increasing

§ A ES g  the depth of slip impact into the pore boundary(d)

is getting deeper

o the gravity(G) is slower the rate of film rupture.

¢ e 3 = =
- ==
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Conclusion

By
Why do these models help people like you and me?

@ It helps us understand that both theoretical and practical

ﬁ behavior of the fluid films when contact lens is present.
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Conclusion

1
Why do these models help people like you and me?
@ It helps us understand that both theoretical and practical
behavior of the fluid films when contact lens is present.
' 'z Also, the pore radius, thickness, and slip impact of the
permeable lens speed up the rate of film thinning. These
show that with an improper use of contact lens, it leads to

Gidiail :

\V dry eyes.

= N ao
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Conclusion
1
Why do these models help people like you and me?
@ It helps us understand that both theoretical and practical
behavior of the fluid films when contact lens is present.
' 'z Also, the pore radius, thickness, and slip impact of the
permeable lens speed up the rate of film thinning. These
show that with an improper use of contact lens, it leads to

Pt

\V dry eyes.

o The gravity increases the lifetime of the film, but-all.other

i effects still play a major role on rupture of the film.

t_: i ; = =
- T =
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Conclusion

By
Why do these models help people like you and me?

@ It helps us understand that both theoretical and practical
behavior of the fluid films when contact lens is present.
' 'z Also, the pore radius, thickness, and slip impact of the
>, permeable lens speed up the rate of film thinning. These
2N show that with an improper use of contact lens, it leads to

&

\_/ dry eyes.

o The gravity increases the lifetime of the film, but-all.other
effects still play a major role on rupture of the film.
i Using the right-properties of contact lens can maximize
the lifetime of the fluid films.

Image courtesy of wwwitargetwoman.com

- : - =
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o Improve the numerical scheme,
using Spectral Method

o May also convert to FORTRAN
code for faster computation

@ Optimization on the effect of
« —vakiables testhe mealistic value

fall-

3 . =
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o Improve the numerical scheme,
using Spectral Method

o May also convert to FORTRAN
code for faster computation

o Optimization on the effect of

. varables teythe realistic value

=i - - =
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