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Space Weather

Solar Wind
Space Plasma

Magnetosphere
Region in space,
surrounding the earth,
composed of charged
particles and governed
by magnetic flux.

Plasma Sheet
Site of Reconnection
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Goals

Describe the physical interactions within the system:
Lead to better predictions when forecasting space weather
Aid Development of a Physical Theory for this system
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Self Organized Criticality

Simply rules govern the
dynamics

Thresholds exist within the
system

The threshold is eventually
exceeded by the build up of
energy

Systems displaying
characteristics associated
with SOC dissipate stored
energy in avalanches [3].
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Instability

∂
∂t B(z, t) = Dmin

∂2

∂z2 B(z, t) + S(z)

∂
∂t B(z, t) = ∂

∂z

“
D(z, t) ∂

∂z B(z, t)
”

+ S(z)
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Model Description

The Model is Given by:

∂Bx

∂t
=

∂

∂z

(
D(z, t)

∂Bx

∂z

)
+ S(z) (1)

∂

∂t
(D(z, t)) =

Q
(∣∣∂Bx

∂z

∣∣)
τ

− D
τ

(2)

Q
(∣∣∣∣∂Bx

∂z

∣∣∣∣) =
{

Dmin for low state
Dmax for high state

(3)
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Time 1

Time 2

Time 3

Time 4

Time 5

Time 6

The input of energy by the
source term drives the
system to the point of
criticality

Once the critical point is
reached, the system reacts
by unloading the energy in
avalanches

System returns to a stable
state, but steep slopes will
be present in many local
spatial positions [3].
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Total Energy

The total energy of the system at any instant is defined:

E(t) =
∫

(Bx)
2 dz

Figure 1: S0 = 3× 10−4

Figure 2: S0 = 10−4

Figure 3: S0 = 3× 10−3

Figure 4: S0 = 10−3
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Time Averaged Mean

Field strength balanced by induced dynamic state
System remains close to, but under the critical state
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Parameters

Free Parameters:
τ , Dmin, Dmax, S0, k, β

Reduction in the number of parameters
To analyze the effects of the free parameters on the systems ability to
attain an SOC state
Dr, S′

0, β
Where Dr is the ratio of Dmin and Dmax, i.e Dr = Dmin

Dmax

The system becomes:

∂B′
x

∂t′
=

∂

∂z′

(
D(z′, t′)

∂B′
x

∂z′

)
+ S′

0sin
(
πz′

2L′

)
(4)

∂

∂t′
(
D′(z′, t′)

)
= Q′

(∣∣∣∣∂B′
x

∂z′

∣∣∣∣)− D′ (5)

Q′
(∣∣∣∣∂B′

x

∂z′

∣∣∣∣) =
{

Dr low state
1 high state

(6)
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Analysis: Nondimensional Model

Values of remaining
parameters:

Dr = fixed, β = fixed,
S′

0 = varied

Movie (click to play)
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Conclusions and Future Work

The Diffusive System Displays Characteristics associated with
Self-Organized Criticality

The number of states the system takes on is much greater then what was
previously known.

Need to research/develop a smarter algorithm for analysis.
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