Self Organization in a Diffusion Model of Thin Electric Current Sheets

Student Researcher: Andrew Kercher Faculty Advisor: Dr. Robert Weigel

Undergraduate Research in Computational Mathematics George Mason University

April 5, 2008

< ロ > < 同 > < 三 > < 三 >

Upcoming Topics

- Space Weather
 - Solar Wind
 - Earth's Magnetosphere

イロン イロン イヨン イヨン

Upcoming Topics

- Space Weather
 - Solar Wind
 - Earth's Magnetosphere
- Self Organized Criticality
 - Instability

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Upcoming Topics

- Space Weather
 - Solar Wind
 - Earth's Magnetosphere
- Self Organized Criticality
 - Instability
- Prior Work of Lu and Klimas

< □ > < 同 > < 回 > < 回 > < 回

Upcoming Topics

- Space Weather
 - Solar Wind
 - Earth's Magnetosphere
- Self Organized Criticality
 - Instability
- Prior Work of Lu and Klimas
- Analysis
 - Model
 - Total Field Energy
 - Time Averaged Mean
 - Power Spectral Density

< ∃ >

Upcoming Topics

- Space Weather
 - Solar Wind
 - Earth's Magnetosphere
- Self Organized Criticality
 - Instability
- Prior Work of Lu and Klimas
- Analysis
 - Model
 - Total Field Energy
 - Time Averaged Mean
 - Power Spectral Density

Conclusions

- ₹ 🖹 🕨

Upcoming Topics

- Space Weather
 - Solar Wind
 - Earth's Magnetosphere
- Self Organized Criticality
 - Instability
- Prior Work of Lu and Klimas
- Analysis
 - Model
 - Total Field Energy
 - Time Averaged Mean
 - Power Spectral Density
- Conclusions
- Future Work

- ₹ 🖹 🕨

Space Weather

- Solar Wind
 - Space Plasma

<ロト < 四ト < 三ト < 三ト

Space Weather

- Solar Wind
 - Space Plasma
- Magnetosphere
 - Region in space, surrounding the earth, composed of charged particles and governed by magnetic flux.

< ロ ト < 回 ト < 三 ト</p>

Space Weather

- Solar Wind
 - Space Plasma
- Magnetosphere
 - Region in space, surrounding the earth, composed of charged particles and governed by magnetic flux.
- Plasma Sheet
 - Site of Reconnection

- Describe the physical interactions within the system:
 - Lead to better predictions when forecasting space weather
 - Aid Development of a Physical Theory for this system

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Self Organized Criticality

- Simply rules govern the dynamics
- Thresholds exist within the system
- The threshold is eventually exceeded by the build up of energy
- Systems displaying characteristics associated with SOC dissipate stored energy in avalanches [3].

- ₹ 🖹 🕨

 $\frac{\partial}{\partial t}B(z,t) = \frac{\partial}{\partial z}\left(D(z,t)\frac{\partial}{\partial z}B(z,t)\right) + S(z)$

イロト イ団ト イヨト イヨト

SOC

Model Description

The Model is Given by:

$$\frac{\partial B_x}{\partial t} = \frac{\partial}{\partial z} \left(D(z, t) \frac{\partial B_x}{\partial z} \right) + S(z) \tag{1}$$

$$\frac{\partial}{\partial t} \left(D(z,t) \right) = \frac{Q\left(\left| \frac{\partial B_x}{\partial z} \right| \right)}{\tau} - \frac{D}{\tau}$$
(2)

$$Q\left(\left|\frac{\partial B_x}{\partial z}\right|\right) = \begin{cases} D_{min} & \text{for low state} \\ D_{max} & \text{for high state} \end{cases}$$

・ロト ・ 日 ・ ・ ヨ ・ ・

(3)

Time 6

• The input of energy by the source term drives the system to the point of criticality

イロト イ団ト イヨト イヨト

Time 3

Andrew Kercher (GMU)

April 5, 2008 8 / 14

- The input of energy by the source term drives the system to the point of criticality
- Once the critical point is reached, the system reacts by unloading the energy in avalanches

Time 6

Andrew Kercher (GMU)

Time 6

- The input of energy by the source term drives the system to the point of criticality
- Once the critical point is reached, the system reacts by unloading the energy in avalanches
- System returns to a stable state, but steep slopes will be present in many local spatial positions [3].

Andrew Kercher (GMU)

SOC

April 5, 2008 8 / 14

Total Energy

The total energy of the system at any instant is defined:

$$E(t) = \int \left(B_x\right)^2 dz$$

Figure 4: $S_0 = 10 \mathbb{P}^3$ $\langle \Xi \rangle \langle \Xi \rangle \equiv \langle \odot \heartsuit \circlearrowright$

Andrew Kercher (GMU)

SOC

Time Averaged Mean

• Field strength balanced by induced dynamic state

• System remains close to, but under the critical state

Andrew Kercher (GMU)

- Free Parameters:
 - τ , D_{min} , D_{max} , S_0 , k, β

<ロト < 四ト < 三ト < 三ト

- Free Parameters:
 - τ , D_{min} , D_{max} , S_0 , k, β
- Reduction in the number of parameters
 - To analyze the effects of the free parameters on the systems ability to attain an SOC state
 - D_r, S_0', β
 - Where D_r is the ratio of D_{min} and D_{max} , i.e $D_r = \frac{D_{min}}{D_{max}}$

- Free Parameters:
 - τ , D_{min} , D_{max} , S_0 , k, β
- Reduction in the number of parameters
 - To analyze the effects of the free parameters on the systems ability to attain an SOC state
 - D_r, S_0', β
 - Where D_r is the ratio of D_{min} and D_{max} , i.e $D_r = \frac{D_{min}}{D_{max}}$
- The system becomes:

$$\frac{\partial B'_{x}}{\partial t'} = \frac{\partial}{\partial z'} \left(D(z',t') \frac{\partial B'_{x}}{\partial z'} \right) + S'_{0} sin\left(\frac{\pi z'}{2L'}\right)$$
(4)

$$\frac{\partial}{\partial t'} \left(D'(z',t') \right) = Q' \left(\left| \frac{\partial B'_x}{\partial z'} \right| \right) - D'$$
(5)

$$Q'\left(\left|\frac{\partial B'_x}{\partial z'}\right|\right) = \begin{cases} D_r & \text{low state} \\ 1 & \text{high state} \end{cases}$$
(6)

April 5, 2008

11/14

- Free Parameters:
 - τ , D_{min} , D_{max} , S_0 , k, β
- Reduction in the number of parameters
 - To analyze the effects of the free parameters on the systems ability to attain an SOC state
 - D_r, S_0', β
 - Where D_r is the ratio of D_{min} and D_{max} , i.e $D_r = \frac{D_{min}}{D_{max}}$
- The system becomes:

$$\frac{\partial B'_{x}}{\partial t'} = \frac{\partial}{\partial z'} \left(D(z',t') \frac{\partial B'_{x}}{\partial z'} \right) + S'_{0} sin\left(\frac{\pi z'}{2L'}\right)$$
(4)

$$\frac{\partial}{\partial t'} \left(D'(z',t') \right) = Q' \left(\left| \frac{\partial B'_x}{\partial z'} \right| \right) - D'$$
(5)

$$Q'\left(\left|\frac{\partial B'_x}{\partial z'}\right|\right) = \begin{cases} D_r & \text{low state} \\ 1 & \text{high state} \end{cases}$$
(6)

April 5, 2008

11/14

Analysis: Nondimensional Model

• Values of remaining parameters:

э

Analysis: Nondimensional Model

• Values of remaining parameters:

•
$$D_r = \text{fixed}, \beta = \text{fixed}, S'_0 = \text{varied}$$

Movie (click to play)

- ₹ 🖹 🕨

- The Diffusive System Displays Characteristics associated with Self-Organized Criticality
- The number of states the system takes on is much greater then what was previously known.
- Need to research/develop a smarter algorithm for analysis.

Thanks

- Special thanks to ...
 - Dr. Robert Weigel
 - URCM
 - Lu and Klimas, for their prior work
 - and of course, the audience

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Per Bak, Chao Tang, Kurt Wiesenfeld, Phys. Rev. Lett. Vol. 59 (1987) 381
- Henrik Heldtoft Jensen, Kim Christensen and Hans C. Fogedby, Phys. Rev.B, Vol. 40 (1989) 7425

A. Klimas et al.,

Self-organized substorm phenomenon and its relation to localized reconnection in the magnetospheric plasma sheet, J. Geophys. Res., 105(A8), (2000) 18,765-18,780.

E. T. Lu,

Avalanches in continuum driven dissipative systems, Phys. Rev. Lett., 74(13), (1995) 2511-2514.