Genetic Code
A Matrix and Combinatoric Approach

Tanner Crowder

April 5, 2008
Introduction

Genetic and Gray Code
Matrices Relating to Genetic Code

Eigenstructure of D_n
Eigenvalues
Eigenvectors

The Genetic Code Matrix C_n
Basic Structures of C_n
Hypercube Structure
Acknowledgments

Thanks to Dr. Chi-Kwong Li, for advising me on my honors thesis and his dedication to this work. I would also like to thank the Professors at William and Mary that have made CSUMS possible.
Genetic Code

- Genetic Code is the set of rules by which information is encoded in DNA/RNA that is translated into amino acid sequences by living cells.
Genetic code

- Genetic Code is the set of rules by which information is encoded in DNA/RNA that is translated into amino acid sequences by living cells.
- Nucleotides are the basis for encoding which are labeled \{C, U, A, G\}
Genetic code

- Genetic Code is the set of rules by which information is encoded in DNA/RNA that is translated into amino acid sequences by living cells.

- Nucleotides are the basis for encoding which are labeled \{C, U, A, G\}

- A genetic code map is \(g : C' \rightarrow A' \), where \(C' = \langle \{x_1, x_2, x_3\} \rangle \) where \(x_i \in R = \{A, C, G, U\} \), where \(C' \) is the set of codons, and \(A' \) are the amino acids and termination codons.
Genetic code

- Genetic Code is the set of rules by which information is encoded in DNA/RNA that is translated into amino acid sequences by living cells.
- Nucleotides are the basis for encoding which are labeled \(\{C, U, A, G\} \).
- A genetic code map is \(g : C' \rightarrow A' \), where \(C' = \{x_1x_2x_3\} : x_i \in R = \{A, C, G, U\} \), where \(C' \) is the set of codons, and \(A' \) are the amino acids and termination codons.
- The focus of this study is building matrices for different length nucleotide sequences, and how to represent the sequences more efficiently.
Gray Code

- A Gray-code representation of the nucleotides was proposed by Swanson (Swanson, 1984)
- Gray code is a set of binary sequences with the property that two consecutive number only differ by one position
Gray Code

- A Gray-code representation of the nucleotides was proposed by Swanson (Swanson, 1984)
- Gray code is a set of binary sequences with the property that two consecutive numbers only differ by one position.
- Example: In classical binary, three and four are 011 and 100 respectively. In Gray Code, the 3 bit representations for three and four are 011 and 010, respectively.
Gray Code

- A Gray-code representation of the nucleotides was proposed by Swanson (Swanson, 1984)
- Gray code is a set of binary sequences with the property that two consecutive numbers only differ by one position
- Example: In classical binary, three and four are 011 and 100 respectively. In Gray Code, the 3 bit representations for three and four are 011 and 010, respectively.
- In genetic transcription a mismatch in genetic coding segments will reduce the degree of mutation
Let G_n, be all the Gray code sequences of length n; G_n can be generated by a recursive algorithm.
Gray Code

- Let G_n, be all the Gray code sequences of length n; G_n can be generated by a recursive algorithm.
- $G_n = \{0||a_0, 0||a_1, \ldots, 0||a_{n-1}, 1||a_{n-1}, 1||a_{n-1}, \ldots, 1||a_0\}$, where $a_i \in G_{n-1}$
- Example: $G_1 = \{0, 1\}$, then $G_2 = \{0||0, 0||1, 1||1, 1||0\} = \{00, 01, 11, 10\}$
Gray Code

- Let G_n, be all the Gray code sequences of length n; G_n can be generated by a recursive algorithm.

- $G_n = \{0||a_0, 0||a_1, \ldots, 0||a_{n-1}, 1||a_{n-1}, 1||a_{n-1}, \ldots, 1||a_0\}$, where $a_i \in G_{n-1}$

- Example: $G_1 = \{0, 1\}$, then $G_2 = \{0||0, 0||1, 1||1, 1||0\} = \{00, 01, 11, 10\}$

- Clearly since $|G_n|$ doubles in size from $|G_{n-1}|$ and G_1 only has 2 entries, $|G_n| = 2^n$
Let G_n, be all the Gray code sequences of length n; G_n can be generated by a recursive algorithm.

$G_n = \{0||a_0, 0||a_1, \ldots, 0||a_{n-1}, 1||a_{n-1}, 1||a_{n-1}, \ldots, 1||a_0\}$, where $a_i \in G_{n-1}$

Example: $G_1 = \{0, 1\}$, then

$G_2 = \{0||0, 0||1, 1||1, 1||0\} = \{00, 01, 11, 10\}$

Clearly since $|G_n|$ doubles in size from $|G_{n-1}|$ and G_1 only has 2 entries, $|G_n| = 2^n$

Using two bit Gray code construction $C \sim (0)\ 0, U \sim (1)\ 0, G \sim (1)\ 1$, and $A \sim (0)\ 1$.
Define C_n as the genetic code matrix as the matrix that contains all length n nucleotide sequences.
Genetic Code Matrix

- Define C_n as the genetic code matrix as the matrix that contains all length n nucleotide sequences

\[
C_1 \sim \begin{pmatrix}
0 & 1 \\
\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\
\end{pmatrix} & \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \\
\end{pmatrix}
\end{pmatrix}
\]
Define C_n as the genetic code matrix as the matrix that contains all length n nucleotide sequences.

$C_1 \sim \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$

$C_1 = \begin{pmatrix} C & U \\ A & G \end{pmatrix}$
Genetic and Gray Code

Matrices Relating to Genetic Code

The Genetic Code Matrix C_n

\[
C_2 \sim \begin{pmatrix}
00 & 01 & 11 & 10 \\
00 & 00 & 00 & 00 \\
01 & 01 & 11 & 10 \\
11 & 01 & 01 & 01 \\
10 & 01 & 11 & 10 \\
10 & 10 & 10 & 10
\end{pmatrix}
\]
Introduction

Eigenstructure of D_n

The Genetic Code Matrix C_n

Genetic and Gray Code Matrices Relating to Genetic Code

$C_2 \sim \begin{pmatrix}
00 & 01 & 11 & 10 \\
00 & 00 & 11 & 10 \\
01 & 01 & 11 & 10 \\
11 & 11 & 11 & 10 \\
10 & 10 & 10 & 10
\end{pmatrix}$

$C_2 = \begin{pmatrix}
CC & CU & UU & UC \\
CA & CG & UG & UA \\
AA & AG & GG & GA \\
AC & AU & GU & GC
\end{pmatrix}$
The hamming distance is a measure of how different are two strings of the same length.
The hamming distance is a measure of how different are two strings of the same length.

For example the codon $CAG \sim (001)$ has a hamming distance of 1, because the second position is different.
The hamming distance is a measure of how different are two strings of the same length.

For example the codon \(\text{CAG} \sim \begin{pmatrix} 001 \\ 011 \end{pmatrix} \) has a hamming distance of 1, because the second position is different.

Define \(D_n \) as the hamming distance matrix that computes the hamming distance between the entries of the cells of the genetic code matrix.
D_1 and D_2

Recall

$$C_1 \sim \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

so

$$D_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
D_1 and D_2

- Recall

\[C_1 \sim \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \]

so
\[D_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \]

- And

\[C_2 \sim \begin{pmatrix} 00 & 01 & 11 & 10 \\ 00 & 01 & 11 & 10 \\ 00 & 01 & 11 & 10 \\ 00 & 01 & 11 & 10 \end{pmatrix} \begin{pmatrix} 00 & 01 & 11 & 10 \\ 00 & 01 & 11 & 10 \\ 00 & 01 & 11 & 10 \end{pmatrix} \]

so
\[D_2 = \begin{pmatrix} 0 & 1 & 2 & 1 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 0 \end{pmatrix} \]
Basic Properties of D_n

Theorem

(i) *The Hamming Distance-based matrix D_n is also a $2^n \times 2^n$ matrix with Hamming distances of 0, 1, 2,...,n. The common row/column sum of the matrix D_n equals $n2^{n-1}$ and the total summation of the entries of the matrix D_n is $n2^{2n-1}$.*
Basic Properties of D_n

Theorem

(i) The Hamming Distance-based matrix D_n is also a $2^n \times 2^n$ matrix with Hamming distances of 0, 1, 2, ..., n. The common row/column sum of the matrix D_n equals $n2^{n-1}$ and the total summation of the entries of the matrix D_n is $n2^{2n-1}$.

(ii) The matrix D_n is doubly stochastic and symmetric.
Basic Properties of D_n

Theorem

(i) *The Hamming Distance-based matrix D_n is also a $2^n \times 2^n$ matrix with Hamming distances of 0, 1, 2, ..., n. The common row/column sum of the matrix D_n equals $n2^{n-1}$ and the total summation of the entries of the matrix D_n is $n2^{2n-1}$.*

(ii) *The matrix D_n is doubly stochastic and symmetric.*

(iii) *D_n is centrally embedded in D_{n+1}*
Recursion in D_n

Theorem

Let $D_n = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$ where B_{ij} is a $2^{n-1} \times 2^{n-1}$ sub matrix.

Then

$$D_{n+1} = \begin{pmatrix} B_{11} & B_{12} & 2J_{n-1} + B_{11} & B_{12} \\ B_{12} & B_{11} & B_{12} & 2J_{n-1} + B_{12} \\ 2J_{n-1} + B_{11} & B_{12} & B_{11} & B_{12} \\ B_{12} & 2J_{n-1} + B_{11} & B_{12} & B_{11} \end{pmatrix}$$
Recursion in D_n

Theorem

Let $D_n = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$ where B_{ij} is a $2^{n-1} \times 2^{n-1}$ sub matrix.

Then

$$D_{n+1} = \begin{pmatrix} B_{11} & B_{12} & 2J_{n-1} + B_{11} & B_{12} \\ B_{12} & B_{11} & B_{12} & 2J_{n-1} + B_{12} \\ 2J_{n-1} + B_{11} & B_{12} & B_{11} & B_{12} \\ B_{12} & 2J_{n-1} + B_{11} & B_{12} & B_{11} \end{pmatrix}$$

- Notice that if D_{n+1} is written in the 4×4 block structure, D_n appears centrally embedded as a 2×2 block.
Recursion in D_n

Theorem

Let $D_n = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$ where B_{ij} is a $2^{n-1} \times 2^{n-1}$ sub matrix.

Then

$$D_{n+1} = \begin{pmatrix} B_{11} & B_{12} & 2J_{n-1} + B_{11} & B_{12} \\ B_{12} & B_{11} & B_{12} & 2J_{n-1} + B_{12} \\ 2J_{n-1} + B_{11} & B_{12} & B_{11} & B_{12} \\ B_{12} & 2J_{n-1} + B_{11} & B_{12} & B_{11} \end{pmatrix}$$

- Notice that if D_{n+1} is written in the 4×4 block structure, D_n appears centrally embedded as a 2×2 block.
- D_n stores information about C_n, however reduces the amount of information stored by a factor of n.
The matrix $D_n \in M_{2^n}$ has $n + 1$ nonzero eigenvalues equal to

$$n2^{n-1}, -2^{n-1}, -2^{n-1}, \ldots, -2^{n-1}.$$
The matrix \(D_n \in M_{2n} \) has \(n + 1 \) nonzero eigenvalues equal to

\[
n2^{n-1}, -2^{n-1}, -2^{n-1}, \ldots, -2^{n-1}.
\]

This is fortunate because unlike everything else so far, this is not recursive.
The matrix $D_n \in M_{2^n}$ has $n + 1$ nonzero eigenvalues equal to

$$n2^{n-1}, -2^{n-1}, -2^{n-1}, \ldots, -2^{n-1}.$$

This is fortunate because unlike everything else so far, this is not recursive.

Notice the first eigenvalue is the column row sum.
Eigenvectors of D_n

- Recall $D_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

- It is easy to see that a set of orthonormal eigenvectors are $v_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $v_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
Eigenvectors of D_n

Also recall that $D_2 = \begin{pmatrix} 0 & 1 & 2 & 1 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 0 \end{pmatrix}$

A set of orthonormal eigenvectors are $v_0 = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $v_1 = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$, $v_2 = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$, and $v_3 = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}$
Eigenvectors of D_n

- There is recursion in the eigenvectors of D_n

\[\tilde{v}_j = \frac{1}{\sqrt{2}} (v_j - v_j) \text{ for } j = 0, \ldots, n - 1, \quad \tilde{v}_n = \frac{1}{\sqrt{2}} (v_n - v_n) \]

These form an orthonormal set of eigenvectors of D_{n+1} corresponding to the nonzero eigenvalues.

This lets us write the powers of D_k^n, in terms of the knowing nothing other than D_n, n, and k.
There is recursion in the eigenvectors of D_n

$\tilde{v}_j = \frac{1}{\sqrt{2}} \begin{pmatrix} v_j \\ v_j \end{pmatrix}$ for $j = 0, \ldots, n-1$, $\tilde{v}_n = \frac{1}{\sqrt{2}} \begin{pmatrix} v_n \\ -v_n \end{pmatrix}$ and

$\tilde{v}_{n+1} = \frac{1}{\sqrt{2}} \begin{pmatrix} v_0 \\ -v_0 \end{pmatrix}$
Eigenvectors of D_n

- There is recursion in the eigenvectors of D_n

- $\tilde{v}_j = \frac{1}{\sqrt{2}} \begin{pmatrix} v_j \\ v_j \end{pmatrix}$ for $j = 0, \ldots, n-1$, $\tilde{v}_n = \frac{1}{\sqrt{2}} \begin{pmatrix} v_n \\ -v_n \end{pmatrix}$ and $\tilde{v}_{n+1} = \frac{1}{\sqrt{2}} \begin{pmatrix} v_0 \\ -v_0 \end{pmatrix}$

- These form an orthonormal set of eigenvectors of D_{n+1} corresponding to the nonzero eigenvalues.
Eigenvectors of D_n

- There is recursion in the eigenvectors of D_n

\[\tilde{v}_j = \frac{1}{\sqrt{2}} \begin{pmatrix} v_j \\ v_j \end{pmatrix} \text{ for } j = 0, \ldots, n-1, \quad \tilde{v}_n = \frac{1}{\sqrt{2}} \begin{pmatrix} v_n \\ -v_n \end{pmatrix} \text{ and } \]

\[\tilde{v}_{n+1} = \frac{1}{\sqrt{2}} \begin{pmatrix} v_0 \\ -v_0 \end{pmatrix} \]

- These form an orthonormal set of eigenvectors of D_{n+1} corresponding to the nonzero eigenvalues.

- This lets us write the powers of D_n^k, in terms of the knowing nothing other than D_n, n and k
The Basics of C_n

- The genetic code-base matrix C_n is a $2^n \times 2^n$ matrix with RNA bases of length n. Each two neighboring entries of genetic code, in both directions differs by exactly one base.
- The genetic code matrix can be defined recursively
The Basics of C_n

- The genetic code-base matrix C_n is a $2^n \times 2^n$ matrix with RNA bases of length n. Each two neighboring entries of genetic code, in both directions differs by exactly one base.
- The genetic code matrix can be defined recursively.
- If C_n is the genetic code matrix then

\[
C_{n+1} = \begin{pmatrix}
C \| C_n & U \| C_n F_n \\
A \| F_n C_n & G \| F_n C_n F_n
\end{pmatrix}
\]

- Note that F_n is a matrix that has 1's on it's off diagonal.
This leads to counting the number of nucleotides per cell, which would store double the information of the hamming distance matrix as a 4-tuple.
This leads to counting the number of nucleotides per cell, which would store double the information of the hamming distance matrix as a 4-tuple.

The 4-tuple would be \((x_C, x_U, x_A, x_G)\), where \(x_i = \text{number of that nucleotide per cell.}\)
This leads to counting the number of nucleotides per cell, which would store double the information of the hamming distance matrix as a 4-tuple.

The 4-tuple would be \((x_C, x_U, x_A, x_G)\), where \(x_i\) = number of that nucleotide per cell.

Label the matrix \(S_n\) to count the number of nucleotides per cell. Then

\[
S_{n+1} = \begin{pmatrix} (1000) + S_n & (0100) + S_nF_n \\ (0010) + F_nS_n & (0001) + F_nS_nF_n \end{pmatrix}
\]
Because D_n is doubly stochastic it is decomposable into a convex combination of permutation matrices that have a leading coefficient of $\{0, 1, \ldots, n\}$.
Decomposition of D_n and Hypercube

- Because D_n is doubly stochastic it is decomposable into a convex combination of permutation matrices that have a leading coefficient of $\{0, 1, \ldots, n\}$.
- The structure can be built recursively as well.
Because D_n is doubly stochastic it is decomposable into a convex combination of permutation matrices that have a leading coefficient of $\{0, 1, \ldots, n\}$.

The structure can be built recursively as well.

Each permutation matrix can be as a vertex of a hypercube and within that vertex there is a subcube.
Because D_n is doubly stochastic it is decomposable into a convex combination of permutation matrices that have a leading coefficient of $\{0, 1, \ldots, n\}$.

The structure can be built recursively as well.

Each permutation matrix can be as a vertex of a hypercube and within that vertex there is a subcube.

There is also a Hamilton circuit between the all nucleotide sequences, where two nucleotide sequences are adjacent if and only if they differ by exactly one position.
Because D_n is doubly stochastic it is decomposable into a convex combination of permutation matrices that have a leading coefficient of $\{0, 1, \ldots, n\}$.

The structure can be built recursively as well.

Each permutation matrix can be as a vertex of a hypercube and within that vertex there is a subcube.

There is also a Hamilton circuit between the all nucleotide sequences, where two nucleotide sequences are adjacent if and only if they differ by exactly one position.

This may be promising in the study of mutations in genetic code.
Further Research

- It would be useful to get the most information of C_n, or S_n and D_n, without having to display an exponential amount of information.
Further Research

- It would be useful to get the most information of C_n, or S_n and D_n, without having to display an exponential amount of information.
- Information is lost with D_n and S_n, i.e. order of nucleotides.
Further Research

- It would be useful to get the most information of C_n, or S_n and D_n, without having to display an exponential amount of information.
- Information is lost with D_n and S_n, i.e. order of nucleotides
- Eventually it would be useful to construct matrices that were polynomial in size