Genetic Code

A Matrix and Combinatoric Approach

Tanner Crowder

April 5, 2008

Introduction
Genetic and Gray Code
Matrices Relating to Genetic Code

Eigenstructure of D_{n}
Eigenvalues
Eigenvectors

The Genetic Code Matrix C_{n}
Basic Structures of C_{n}
Hypercube Structure

Acknowledgments

Thanks to Dr. Chi-Kwong Li, for advising me on my honors thesis and his dedication to this work.
I would also like to thank the Professors at William and Mary that have made CSUMS possible.

Genetic code

- Genetic Code is the set of rules by which information is encoded in DNA/RNA that is translated into amino acid sequences by living cells.

Genetic code

- Genetic Code is the set of rules by which information is encoded in DNA/RNA that is translated into amino acid sequences by living cells.
- Nucleotides are the basis for encoding which are labeled $\{C, U, A, G\}$

Genetic code

- Genetic Code is the set of rules by which information is encoded in DNA/RNA that is translated into amino acid sequences by living cells.
- Nucleotides are the basis for encoding which are labeled $\{C, U, A, G\}$
- A genetic code map is $g: C^{\prime} \rightarrow A^{\prime}$, where $C^{\prime}=\left(\left\{x_{1} x_{2} x_{3}\right\}\right): x_{i} \in R=\{A, C, G, U\}$, where C^{\prime} is the set of codons, and A^{\prime} are the amino acids and termination codons.

Genetic code

- Genetic Code is the set of rules by which information is encoded in DNA/RNA that is translated into amino acid sequences by living cells.
- Nucleotides are the basis for encoding which are labeled $\{C, U, A, G\}$
- A genetic code map is $g: C^{\prime} \rightarrow A^{\prime}$, where $C^{\prime}=\left(\left\{x_{1} x_{2} x_{3}\right\}\right): x_{i} \in R=\{A, C, G, U\}$, where C^{\prime} is the set of codons, and A^{\prime} are the amino acids and termination codons.
- The focus of this study is building matrices for different length nucleotide sequences, and how to represent the sequences more efficiently

Gray Code

- A Gray-code representation of the nucleotides was proposed by Swanson (Swanson, 1984)
- Gray code is a set of binary sequences with the property that two consecutive number only differ by one position

Gray Code

- A Gray-code representation of the nucleotides was proposed by Swanson (Swanson, 1984)
- Gray code is a set of binary sequences with the property that two consecutive number only differ by one position
- Example: In classical binary three and four are 011 and 100 respectively. In Gray Code, the 3 bit representations for three and four are 011 and 010, respectively.

Gray Code

- A Gray-code representation of the nucleotides was proposed by Swanson (Swanson, 1984)
- Gray code is a set of binary sequences with the property that two consecutive number only differ by one position
- Example: In classical binary three and four are 011 and 100 respectively. In Gray Code, the 3 bit representations for three and four are 011 and 010, respectively.
- In genetic transcription a mismatch in genetic coding segments will reduce the degree of mutation

Gray Code

- Let G_{n}, be all the Gray code sequences of length $n ; G_{n}$ can be generated by a recursive algorithm.

Gray Code

- Let G_{n}, be all the Gray code sequences of length $n ; G_{n}$ can be generated by a recursive algorithm.
- $G_{n}=\left\{0| | a_{0}, 0| | a_{1}, \ldots, 0| | a_{n-1}, 1\left\|a_{n-1}, 1\right\| a_{n-1}, \ldots, 1| | a_{0}\right\}$, where $a_{i} \in G_{n-1}$
- Example: $G_{1}=\{0,1\}$, then

$$
G_{2}=\{0\|0,0\| \mid 1,1\|1,1\| 0\}=\{00,01,11,10\}
$$

Gray Code

- Let G_{n}, be all the Gray code sequences of length $n ; G_{n}$ can be generated by a recursive algorithm.
- $G_{n}=\left\{0| | a_{0}, 0| | a_{1}, \ldots, 0| | a_{n-1}, 1| | a_{n-1}, 1| | a_{n-1}, \ldots, 1| | a_{0}\right\}$, where $a_{i} \in G_{n-1}$
- Example: $G_{1}=\{0,1\}$, then $G_{2}=\{0| | 0,0| | 1,1| | 1,1| | 0\}=\{00,01,11,10\}$
- Clearly since $\left|G_{n}\right|$ doubles in size from $\left|G_{n-1}\right|$ and G_{1} only has 2 entries, $\left|G_{n}\right|=2^{n}$

Gray Code

- Let G_{n}, be all the Gray code sequences of length $n ; G_{n}$ can be generated by a recursive algorithm.
- $G_{n}=\left\{0| | a_{0}, 0| | a_{1}, \ldots, 0| | a_{n-1}, 1| | a_{n-1}, 1| | a_{n-1}, \ldots, 1| | a_{0}\right\}$, where $a_{i} \in G_{n-1}$
- Example: $G_{1}=\{0,1\}$, then $G_{2}=\{0| | 0,0| | 1,1| | 1,1| | 0\}=\{00,01,11,10\}$
- Clearly since $\left|G_{n}\right|$ doubles in size from $\left|G_{n-1}\right|$ and G_{1} only has 2 entries, $\left|G_{n}\right|=2^{n}$
- Using two bit Gray code construction $C \sim\binom{0}{0}, U \sim\binom{1}{0}$, $G \sim\binom{1}{1}$, and $A \sim\binom{0}{1}$.

Genetic Code Matrix

- Define C_{n} as the genetic code matrix as the matrix that contains all length n nucleotide sequences

Genetic Code Matrix

- Define C_{n} as the genetic code matrix as the matrix that contains all length n nucleotide sequences
- $C_{1} \sim \begin{gathered}0 \\ 1\end{gathered}\left(\begin{array}{cc}0 & 1 \\ 0 \\ 0\end{array}\right)$

Genetic Code Matrix

- Define C_{n} as the genetic code matrix as the matrix that contains all length n nucleotide sequences
$0 \quad 1$
$-C_{1} \sim \begin{aligned} & 0 \\ & 1\end{aligned}\left(\begin{array}{ll}0 & \left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \\ \binom{0}{1} & \binom{1}{1}\end{array}\right)$
- $C_{1}=\left(\begin{array}{ll}C & U \\ A & G\end{array}\right)$

$$
C_{2}=\left(\begin{array}{llll}
C C & C U & U U & U C \\
C A & C G & U G & U A \\
A A & A G & G G & G A \\
A C & A U & G U & G C
\end{array}\right)
$$

Hamming Distances

- The hamming distance is a measure of how different are two strings of the same length

Hamming Distances

- The hamming distance is a measure of how different are two strings of the same length
- For example the codon CAG $\sim\binom{001}{011}$ has a hamming distance of 1 , because the second position is different.

Hamming Distances

- The hamming distance is a measure of how different are two strings of the same length
- For example the codon CAG $\sim\binom{001}{011}$ has a hamming distance of 1 , because the second position is different.
- Define D_{n} as the hamming distance matrix that computes the hamming distance between the entries of the cells of the genetic code matrix.

D_{1} and D_{2}

- Recall

$$
C_{1} \sim \begin{gathered}
0 \\
0 \\
1
\end{gathered}\left(\begin{array}{cc}
1 \\
0 \\
0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)\binom{1}{1} . \quad \text { so } D_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

D_{1} and D_{2}

- Recall

$$
\begin{aligned}
& 0 \quad 1 \\
& C_{1} \sim \begin{array}{c}
0 \\
1
\end{array}\left(\begin{array}{ll}
0 \\
0 \\
0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)\binom{1}{1} . \quad \text { so } D_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

- And

Basic Properties of D_{n}

Theorem

(i) The Hamming Distance-based matrix D_{n} is also a $2^{n} \times 2^{n}$ matrix with Hamming distances of $0,1,2, \ldots, n$. The common row/column sum of the matrix D_{n} equals $n 2^{n-1}$ and the total summation of the entries of the matrix D_{n} is $n 2^{2 n-1}$.

Basic Properties of D_{n}

Theorem

(i) The Hamming Distance-based matrix D_{n} is also a $2^{n} \times 2^{n}$ matrix with Hamming distances of $0,1,2, \ldots, n$. The common row/column sum of the matrix D_{n} equals $n 2^{n-1}$ and the total summation of the entries of the matrix D_{n} is $n 2^{2 n-1}$.
(ii) The matrix D_{n} is doubly stochastic and symmetric.

Basic Properties of D_{n}

Theorem

(i) The Hamming Distance-based matrix D_{n} is also a $2^{n} \times 2^{n}$ matrix with Hamming distances of $0,1,2, \ldots, n$. The common row/column sum of the matrix D_{n} equals $n 2^{n-1}$ and the total summation of the entries of the matrix D_{n} is $n 2^{2 n-1}$.
(ii) The matrix D_{n} is doubly stochastic and symmetric.
(iii) D_{n} is centrally embedded in D_{n+1}

Recursion in D_{n}

Theorem
Let $D_{n}=\left(\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right)$ where $B_{i j}$ is a $2^{n-1} \times 2^{n-1}$ sub matrix.
Then

$$
D_{n+1}=\left(\begin{array}{cccc}
B_{11} & B_{12} & 2 J_{n-1}+B_{11} & B_{12} \\
B_{12} & B_{11} & B_{12} & 2 J_{n-1}+B_{12} \\
2 J_{n-1}+B_{11} & B_{12} & B_{11} & B_{12} \\
B_{12} & 2 J_{n-1}+B_{11} & B_{12} & B_{11}
\end{array}\right)
$$

Recursion in D_{n}

Theorem
Let $D_{n}=\left(\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right)$ where $B_{i j}$ is a $2^{n-1} \times 2^{n-1}$ sub matrix.
Then
$D_{n+1}=\left(\begin{array}{cccc}B_{11} & B_{12} & 2 J_{n-1}+B_{11} & B_{12} \\ B_{12} & B_{11} & B_{12} & 2 J_{n-1}+B_{12} \\ 2 J_{n-1}+B_{11} & B_{12} & B_{11} & B_{12} \\ B_{12} & 2 J_{n-1}+B_{11} & B_{12} & B_{11}\end{array}\right)$

- Notice that if D_{n+1} is written in the 4×4 block structure, D_{n} appears centrally embedded as a 2×2 block.

Recursion in D_{n}

Theorem
Let $D_{n}=\left(\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right)$ where $B_{i j}$ is a $2^{n-1} \times 2^{n-1}$ sub matrix.
Then
$D_{n+1}=\left(\begin{array}{cccc}B_{11} & B_{12} & 2 J_{n-1}+B_{11} & B_{12} \\ B_{12} & B_{11} & B_{12} & 2 J_{n-1}+B_{12} \\ 2 J_{n-1}+B_{11} & B_{12} & B_{11} & B_{12} \\ B_{12} & 2 J_{n-1}+B_{11} & B_{12} & B_{11}\end{array}\right)$

- Notice that if D_{n+1} is written in the 4×4 block structure, D_{n} appears centrally embedded as a 2×2 block.
- D_{n} stores information about C_{n}, however reduces the amount of information stored by a factor of n.

Eigenvalues of D_{n}

- The matrix $D_{n} \in M_{2^{n}}$ has $n+1$ nonzero eigenvalues equal to

$$
n 2^{n-1}, \overbrace{-2^{n-1},-2^{n-1}, \ldots,-2^{n-1}}^{n} .
$$

Eigenvalues of D_{n}

- The matrix $D_{n} \in M_{2^{n}}$ has $n+1$ nonzero eigenvalues equal to

$$
n 2^{n-1}, \overbrace{-2^{n-1},-2^{n-1}, \ldots,-2^{n-1}}^{n} .
$$

- This is fortunate because unlike everything else so far, this is not recursive

Eigenvalues of D_{n}

- The matrix $D_{n} \in M_{2^{n}}$ has $n+1$ nonzero eigenvalues equal to

$$
n 2^{n-1}, \overbrace{-2^{n-1},-2^{n-1}, \ldots,-2^{n-1}}^{n} .
$$

- This is fortunate because unlike everything else so far, this is not recursive
- Notice the first eigenvalue is the column row sum.

Eigenvectors of D_{n}

- Recall $D_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- It is easy to see that a set of orthonormal eigenvectors are

$$
v_{0}=\frac{1}{\sqrt{2}}\binom{1}{1} \text { and } v_{1}=\frac{1}{\sqrt{2}}\binom{1}{-1}
$$

Eigenvectors of D_{n}

- Also recall that $D_{2}=\left(\begin{array}{llll}0 & 1 & 2 & 1 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 0\end{array}\right)$
- A set of orthonormal eigenvectors are $v_{0}=\frac{1}{2}\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$,

$$
v_{1}=\frac{1}{2}\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right), v_{2}=\frac{1}{2}\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right) \text {, and } v_{3}=\frac{1}{2}\left(\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right)
$$

Eigenvectors of D_{n}

- There is recursion in the eigenvectors of D_{n}

Eigenvectors of D_{n}

- There is recursion in the eigenvectors of D_{n}

$$
\begin{gathered}
\tilde{v}_{j}=\frac{1}{\sqrt{2}}\binom{v_{j}}{v_{j}} \text { for } j=0, \ldots, n-1, \tilde{v}_{n}=\frac{1}{\sqrt{2}}\binom{v_{n}}{-v_{n}} \text { and } \\
\tilde{v}_{n+1}=\frac{1}{\sqrt{2}}\binom{v_{0}}{-v_{0}}
\end{gathered}
$$

Eigenvectors of D_{n}

- There is recursion in the eigenvectors of D_{n}
- $\tilde{v}_{j}=\frac{1}{\sqrt{2}}\binom{v_{j}}{v_{j}}$ for $j=0, \ldots, n-1, \tilde{v}_{n}=\frac{1}{\sqrt{2}}\binom{v_{n}}{-v_{n}}$ and $\tilde{v}_{n+1}=\frac{1}{\sqrt{2}}\binom{v_{0}}{-v_{0}}$
- These form an orthonormal set of eigenvectors of D_{n+1} corresponding to the nonzero eigenvalues.

Eigenvectors of D_{n}

- There is recursion in the eigenvectors of D_{n}
- $\tilde{v}_{j}=\frac{1}{\sqrt{2}}\binom{v_{j}}{v_{j}}$ for $j=0, \ldots, n-1, \tilde{v}_{n}=\frac{1}{\sqrt{2}}\binom{v_{n}}{-v_{n}}$ and $\tilde{v}_{n+1}=\frac{1}{\sqrt{2}}\binom{v_{0}}{-v_{0}}$
- These form an orthonormal set of eigenvectors of D_{n+1} corresponding to the nonzero eigenvalues.
- This lets us write the powers of D_{n}^{k}, in terms of the knowing nothing other than D_{n}, n and k

The Basics of C_{n}

- The genetic code-base matrix C_{n} is a $2^{n} \times 2^{n}$ matrix with RNA bases of length n. Each two neighboring entries of genetic code, in both directions differs by exactly one base.
- The genetic code matrix can be defined recursively

The Basics of C_{n}

- The genetic code-base matrix C_{n} is a $2^{n} \times 2^{n}$ matrix with RNA bases of length n. Each two neighboring entries of genetic code, in both directions differs by exactly one base.
- The genetic code matrix can be defined recursively
- If C_{n} is the genetic code matrix then

$$
C_{n+1}=\left(\begin{array}{cc}
C \| C_{n} & U \| C_{n} F_{n} \\
A \| F_{n} C_{n} & G \| F_{n} C_{n} F_{n}
\end{array}\right)
$$

- Note that F_{n} is a matrix that has 1's on it's off diagonal

Number of Nucleotides per Cell

- This leads to counting the number of nucleotides per cell, which would store double the information of the hamming distance matrix as a 4-tuple

Number of Nucleotides per Cell

- This leads to counting the number of nucleotides per cell, which would store double the information of the hamming distance matrix as a 4-tuple
- The 4-tuple would be $\left(x_{C}, x_{U}, x_{A}, x_{G}\right)$, where $x_{i}=$ number of that nucleotide per cell.

Number of Nucleotides per Cell

- This leads to counting the number of nucleotides per cell, which would store double the information of the hamming distance matrix as a 4-tuple
- The 4-tuple would be $\left(x_{C}, x_{U}, x_{A}, x_{G}\right)$, where $x_{i}=$ number of that nucleotide per cell.
- Label the matrix S_{n} to count the number of nucleotides per cell. Then

$$
S_{n+1}=\left(\begin{array}{cc}
(1000)+S_{n} & (0100)+S_{n} F_{n} \\
(0010)+F_{n} S_{n} & (0001)+F_{n} S_{n} F_{n}
\end{array}\right)
$$

Decomposition of D_{n} and Hypercube

- Because D_{n} is doubly stochastic it is decomposable into a convex combination of permutation matrices that have a leading coefficient of $\{0,1, \ldots, n\}$.

Decomposition of D_{n} and Hypercube

- Because D_{n} is doubly stochastic it is decomposable into a convex combination of permutation matrices that have a leading coefficient of $\{0,1, \ldots, n\}$.
- The structure can be built recursively as well

Decomposition of D_{n} and Hypercube

- Because D_{n} is doubly stochastic it is decomposable into a convex combination of permutation matrices that have a leading coefficient of $\{0,1, \ldots, n\}$.
- The structure can be built recursively as well
- Each permutation matrix can be as a vertex of a hypercube and within that vertex there is a subcube

Decomposition of D_{n} and Hypercube

- Because D_{n} is doubly stochastic it is decomposable into a convex combination of permutation matrices that have a leading coefficient of $\{0,1, \ldots, n\}$.
- The structure can be built recursively as well
- Each permutation matrix can be as a vertex of a hypercube and within that vertex there is a subcube
- There is also a Hamilton circuit between the all nucleotide sequences, where two nucleotide sequences are adjacent if and only if they differ by exactly one position.

Decomposition of D_{n} and Hypercube

- Because D_{n} is doubly stochastic it is decomposable into a convex combination of permutation matrices that have a leading coefficient of $\{0,1, \ldots, n\}$.
- The structure can be built recursively as well
- Each permutation matrix can be as a vertex of a hypercube and within that vertex there is a subcube
- There is also a Hamilton circuit between the all nucleotide sequences, where two nucleotide sequences are adjacent if and only if they differ by exactly one position.
- This may be promising in the study of mutations in genetic code.

Further Research

- It would be useful to get the most information of C_{n}, or S_{n} and D_{n}, without having to display an exponential amount of information.

Further Research

- It would be useful to get the most information of C_{n}, or S_{n} and D_{n}, without having to display an exponential amount of information.
- Information is lost with D_{n} and S_{n}, i.e. order of nucleotides

Further Research

- It would be useful to get the most information of C_{n}, or S_{n} and D_{n}, without having to display an exponential amount of information.
- Information is lost with D_{n} and S_{n}, i.e. order of nucleotides
- Eventually it would be useful to construct matrices that were polynomial in size

