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The Hodge Decomposition Theorem

Theorem
Let (M, g) be a compact, Riemannian manifold. Then for each
k = 1, ..., n, the Hilbert space Ωk(M) of differential k-forms on M
admits an orthonormal decomposition:

Ωk(M) = im d ⊕ im δ ⊕ ker ∆k .

Where d denotes the exterior derivative, δ denotes the
codifferential, and ∆k = dδ + δd is the Hodge Laplacian on M.

Corollary

Hk
dR(M) ∼= ker(∆k)
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Motivation

I Topological information (De Rham Cohomology Groups) of M
can be inferred by knowing the kernel of the k-Laplacian ∆k .

I In the case k = 0 (and sometimes k = 1), the spectrum of ∆k

can be inferred from finite data sampled from M.

I One of the goals for my dissertation is to find a way to infer
for k > 0.
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Overview

I Introduction to differential forms.

I Define common operations ∧, ∗, on differential forms

I Define the exterior derivative d as well as the codifferential δ.

I Construct the Hodge Laplacian ∆ = dδ + δd

I Define the De Rham Cohomology groups Hk(M).

We will see how the Hodge Decomposition Theorem tells us that

Hk
dR(M) ∼= ker(∆k).

Ryan Vaughn The Hodge Decomposition Theorem



Smooth manifolds

Let M be a smooth manifold of dimension n.

I Hausdorff, second countable topological space that is locally
homeomorphic to Rn.

I Equipped with a smooth structure, so one can define smooth
functions on M.

Examples: Rn, spheres, torus
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Tangent Spaces

For each point p ∈ M, one can define the tangent space at p
denoted TpM, which is a dimension n vector space.

Given a smooth map f : M → N, we obtain linear maps
dfp : TpM → Tf (p)N on each of the tangent spaces.
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Riemannian Manifolds

I A Riemannian manifold (M, g) is a smooth manifold together
with a choice of inner product 〈·, ·〉g on each tangent space
TpM.

I This allows us to measure lengths and angles of vectors in
each tangent space, as well as the lengths of curves
γ : [a, b]→ M.
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Differential Forms

Let M be a smooth manifold of dimension n:

I A differential n-form on M is like choosing a determinant on
each tangent space TpM.

I The determinant is multilinear.

I The determinant is alternating : If I plug in a set of linearly
dependent vectors v1, ..., vn, then the determinant is zero.
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Differential Forms

Let M be a smooth manifold of dimension n:

I Formally, a differential n-form ω is a choice of alternating,
multilinear map

ωp : TpM × ...× TpM → R

for each p ∈ M. Meaning that ωp is zero whenever a linearly
dependent set of vectors is inputted. We also require ωp to
vary smoothly across M a function of p.

I Intuitively, this is a way to measure “volume” in each tangent
space.
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The Riemannian Volume Form

Now let (M, g) be an (orientable) Riemannian manifold of
dimension n.

I There is an obvious choice for an n-form.

I If we take an orthonormal set {v1, .., vn} of vectors in TpM,
the hypercube spanned by the vectors “should” have volume
1.

I There exists a unique n-form on M with this property, called
the Riemannian volume form, denoted Vg .

I Vg is the differential form that assigns unit volume to unit
hypercubes in each TpM.
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k-forms

Now M be a manifold of dimension n and let k < n.

I Let {e1, ..., en} be a basis for TpM.

I Example: Let v1, v2 ∈ TpM and Denote e1 ∧ e2(v1, v2) as the
2-d volume of the square formed by projecting v1 and v2 onto
the subspace formed by e1 and e2.

I e1 ∧ e2 is a 2-form. (Assuming we construct it across all
TpM.)
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k-forms

I For any choice of k unique basis vectors {ei1 , ..., eik}, I can
define e i1 ∧ ... ∧ e ik in the same manner to measure the k
dimensional area of vectors in the subspace spanned by
ei1 , ..., eik .

I For technical reasons, we always choose ik to be strictly
increasing.

I Each such e i1 ∧ ... ∧ e ik can be added and scalar multiplied.
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k-forms

I A differential k-form ω can be written as:

ω =
∑

I=(i1,...,ik )

fI e
I

where e I = e i1 ∧ .. ∧ e ik and fI : M → R is smooth. (The fI
represent a choice of linear constants for each fixed TpM that
varies smoothly across M.)

I The set of all differential k-forms on a manifold M is denoted
Ωk(M).

Ryan Vaughn The Hodge Decomposition Theorem



k-forms

The set Ωk(M) is
(n
k

)
dimensional over C∞M.

I There are
(n
k

)
ways to select e I , and the set of e I are a

pointwise basis for Ωk(M).

I Functions in C∞(M) denote a way to choose linear constants
over each TpM.

I In the case k = 0, we define Ω0(M) = C∞(M).
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The Exterior Derivative

I The Exterior derivative dk maps k-forms to k + 1 forms.

I The Fundamental Theorem of Calculus exists on manifolds,
and is stated in terms of d (Stokes’ Theorem).∫

M
dω =

∫
∂M

ω
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The Exterior Derivative

I When k = 0, a differential form is simply a smooth function
f : M → R. This induces a linear map on tangent spaces:

dfp : TpM → Tf (p)R = R

I dfp is 1-multilinear, alternating, and varies smoothly as a
function of p. Thus, it is a 1-form!
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The Exterior Derivative

I If ω is a k-form and we write:

ω =
∑

I=(i1,...,ik )

fI e
I

then we define dω as:

dω =
∑

I=(i1,...,ik )

dfI ∧ e I .

I We take the 0-form fI , make it into a 1-form, then “glue” it
to e I with the wedge product, making a k + 1 form.
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The Exterior Derivative

I In practice, we need to know more algebra to compute dω.
I Fun Facts:

1. If f is a constant function, df = 0.
2. d is linear over R.
3. dk+1(dkω) = 0 for any ω ∈ Ωk(M).

d ◦ d = 0.
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De Rham Cohomology

I dk+1(dkω) = 0 implies that ker dk+1 ⊆ im dk .

I Define

Hk
dR(M) =

ker dk+1

im dk
.

I Hk
dR(M) is a (possibly infinite-dimensional) vector space over

R, called the k-th de Rham Cohomology group of M.

I The dimension of Hk
dR(M) roughly counts the number of

k-dimensional holes in M.
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The Hodge Decomposition Theorem

Theorem
Let (M, g) be a compact, Riemannian manifold. Then for each
k = 1, ..., n, the Hilbert space Ωk(M) of differential k-forms on M
admits an orthonormal decomposition:

Ωk(M) = im d ⊕ im δ ⊕ ker ∆k .

Where d denotes the exterior derivative, δ denotes the
codifferential, and ∆k = dδ + δd is the Hodge Laplacian on M.

Corollary

Hk
dR(M) = ker(∆k)
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The Codifferential

The codifferential δ is a map:

δ : Ωk(M)→ Ωk−1(M)

defined by:
δω = (−1)n(n−k)+1 ∗ d ∗ ω.

I Fun Facts:
1. δ is linear over R
2. δ ◦ δ = 0

Definition
The k-th Hodge Laplacian ∆k : Ωk(M)→ Ωk(M) is the mapping

∆k = δd + dδ.
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The Hodge Star

Let e1, ..., en be an orthonormal basis for TpM. Then we see that

Vg = e1 ∧ ... ∧ en

which measures the n-dimensional volume such that

Vg (e1, ..., en) = 1.

Suppose we take e i1 ∧ ... ∧ e ik . We can determine Vg if we also
know e j1 ∧ ... ∧ e jn−k where the j`’s are the indices that are
complementary to i1, ..., ik .
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The Hodge Star

The Hodge star ∗ : Ωk(M)→ Ωn−k(M) maps a k-form ω to
∗ω ∈ Ωn−k(M) such that

ω ∧ ∗ω = Vg .

This mapping is an isomorphism! so Ωk(M) ∼= Ωn−k(M).
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The Codifferential

The codifferential δ = (−1)n(n−k)+1 ∗ d∗ can be explained by the
following process:

1. Ignore (−1)n(n−k)+1, it’s there for algebraic reasons.

2. Imagine a k-form ω as a way to measure k-dimensional
subspace of a hypercube.

3. Instead of using k , measure the complementary
n − k-dimensional volume of the hypercube given by ∗ω.

4. Take the exterior derivative of ∗ω which gives an n − (k − 1)
dimensional volume.

5. Imagine the volume of the complementary (k − 1)-dimensional
volume which is given by ∗d ∗ ω.
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The Inner Product on Ωk(M)

We can now define an inner product on Ωk(M) by:

(ω, η) =

∫
M
ω ∧ ∗η

I With respect to this inner product, δ is the adjoint to d . For
all ω ∈ Ωk−1(M) and ,η ∈ Ωk(M)

(dω, η) = (ω, δη)
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The Hodge Decomposition Theorem

Theorem
Let (M, g) be a compact, Riemannian manifold. Then for each
k = 1, ..., n, the Hilbert space Ωk(M) of differential k-forms on M
admits an orthonormal decomposition:

Ωk(M) = im d ⊕ im δ ⊕ ker ∆k .

Where d denotes the exterior derivative, δ denotes the
codifferential, and ∆k = dδ + δd is the Hodge Laplacian on M.

Corollary

Hk
dR(M) ∼= ker(∆k)
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Proof of the Corollary

Corollary

Hk
dR(M) ∼= ker(∆k)

Proof:
I We will show that the mapping

φ : ker ∆k → Hk
dR(M) =

ker dk
im dk−1

defined by:
φ(ω) = [ω]

is bijective.
I Decompose ω:

φ(ω) = [ω]

= [ωd + ωδ + ω∆]

= [ωd ] + [ωδ] + [ω∆]
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Proof of the Corollary

Claim: [ωd ] = [0]

Proof: ωd ∈ im dk−1

Claim: ωδ = 0

Proof: Take the exterior derivative.We know dω = 0.

0 = dω = dωd + dωδ + dω∆.
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Proof of the Corollary

Claim: [ωd ] = [0]

Proof: ωd ∈ im dk−1

Claim: ωδ = 0

Proof: Take the exterior derivative. We know dω = 0.

0 = dω = d ◦ dη1 + d ◦ δη2 + dω∆.
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Proof of the Corollary

Claim: [ωd ] = [0]

Proof: ωd ∈ im dk−1

Claim: ωδ = 0

Proof: Take the exterior derivative. We know dω = 0.

0 = 0 + d ◦ δη2 + dω∆.
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Proof of the Corollary

Claim: [ωd ] = [0]

Proof: ωd ∈ im dk−1

Claim: ωδ = 0

Proof: Take the exterior derivative. We know dω = 0.

0 = 0 + d ◦ δη2 + dω∆.

(∆kω∆, ω∆) = 0
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Proof of the Corollary

Claim: [ωd ] = [0]

Proof: ωd ∈ im dk−1

Claim: ωδ = 0

Proof: Take the exterior derivative. We know dω = 0.

0 = 0 + d ◦ δη2 + dω∆.

((dδ + δd)ω∆, ω∆) = 0
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Proof of the Corollary

Claim: [ωd ] = [0]

Proof: ωd ∈ im dk−1

Claim: ωδ = 0

Proof: Take the exterior derivative. We know dω = 0.

0 = 0 + d ◦ δη2 + dω∆.

(dδω∆, ω∆) + (δdω∆, ω∆) = 0
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Proof of the Corollary

Claim: [ωd ] = [0]

Proof: ωd ∈ im dk−1

Claim: ωδ = 0

Proof: Take the exterior derivative. We know dω = 0.

0 = 0 + d ◦ δη2 + dω∆.

(δω∆, δω∆) + (dω∆, dω∆) = 0
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Proof of the Corollary

Claim: [ωd ] = [0]

Proof: ωd ∈ im dk−1

Claim: ωδ = 0

Proof: Take the exterior derivative. We know dω = 0.

0 = 0 + d ◦ δη2 + dω∆.

‖δω∆‖2 + ‖dω∆‖2 = 0
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Proof of the Corollary

Claim: [ωd ] = [0]

Proof: ωd ∈ im dk−1

Claim: ωδ = 0

Proof: Take the exterior derivative. We know dω = 0.

0 = 0 + d ◦ δη2 + 0.

‖δω∆‖2 + ‖dω∆‖2 = 0
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Proof of the Corollary

Claim: [ωd ] = [0]

Proof: ωd ∈ im dk−1

Claim: ωδ = 0

Proof: Take the exterior derivative. We know dω = 0.

0 = d ◦ δη2.

(d ◦ δη2, η2) = 0
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Proof of the Corollary

Claim: [ωd ] = [0]

Proof: ωd ∈ im dk−1

Claim: ωδ = 0

Proof: Take the exterior derivative. We know dω = 0.

0 = d ◦ δη2.

(δη2, δη2) = 0
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Proof of the Corollary

Claim: [ωd ] = [0]

Proof: ωd ∈ im dk−1

Claim: ωδ = 0

Proof: Take the exterior derivative. We know dω = 0.

0 = d ◦ δη2.

(ωδ, ωδ) = 0
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Proof of the Corollary

Claim: [ωd ] = [0]

Proof: ωd ∈ im dk−1

Claim: ωδ = 0

Proof: Take the exterior derivative. We know dω = 0.

0 = 0 + d ◦ δη2 + 0.

‖ωδ‖2 = 0
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Proof of the Corollary

Claim: [ωd ] = [0]

Proof: ωd ∈ im dk−1

Claim: ωδ = 0

Proof: Take the exterior derivative. We know dω = 0.

0 = 0 + d ◦ δη2 + 0.

ωδ = 0
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Proof of the Corollary

Corollary

Hk
dR(M) ∼= ker(∆k)

Proof:
I We will show that the mapping

φ : ker ∆k → Hk
dR(M) =

ker dk
im dk−1

defined by:
φ(ω) = [ω]

is bijective.
I Decompose ω:

φ(ω) = [ω]

= [ωd + ωδ + ω∆]

= [ωd ] + [ωδ] + [ω∆]
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Proof of the Corollary

Corollary

Hk
dR(M) ∼= ker(∆k)

Proof:

I Injective: Let ω ∈ ker ∆k be such that

φ(ω) = [0].

We have:
φ(ω) = [ω] = [ωd ] + [ωδ] + [ω∆]
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Proof of the Corollary

Corollary

Hk
dR(M) ∼= ker(∆k)

Proof:

I Injective: Let ω ∈ ker ∆k be such that

φ(ω) = [0].

We have:
φ(ω) = [ω] = [ωd ] + [0] + [ω∆].
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Proof of the Corollary

Corollary

Hk
dR(M) ∼= ker(∆k)

Proof:

I Injective: Let ω ∈ ker ∆k be such that

φ(ω) = [0].

We have:
φ(ω) = [ω] = [0] + [0] + [ω∆].
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Proof of the Corollary

Corollary

Hk
dR(M) ∼= ker(∆k)

Proof:

I Injective: Let ω ∈ ker ∆k be such that

φ(ω) = [0].

We have:
φ(ω) = [ω] = [ω∆] = [0].

Therefore ω∆ = 0.
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Proof of the Corollary

Corollary

Hk
dR(M) ∼= ker(∆k)

Proof:

I Surjective: Let [ω] ∈ Hk
dR(M). Then

φ(ω∆) = [0] + [0] + [ω∆].

φ(ω∆) = [ωd ] + [ωδ] + [ω∆]

= [ω]

Therefore φ : ker ∆k → Hk
dR(M) is an isomorphism.
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Proof of the Corollary

Corollary

Hk
dR(M) ∼= ker(∆k)

Proof:

I Surjective: Let [ω] ∈ Hk
dR(M). Then

φ(ω∆) = [0] + [0] + [ω∆].

φ(ω∆) = [ωd ] + [ωδ] + [ω∆]

= [ω]

Therefore φ : ker ∆k → Hk
dR(M) is an isomorphism.
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Proof of the Corollary

Corollary

Hk
dR(M) ∼= ker(∆k)

Proof:

I Surjective: Let [ω] ∈ Hk
dR(M). Then

φ(ω∆) = [0] + [0] + [ω∆].

φ(ω∆) = [ωd ] + [ωδ] + [ω∆]

= [ω]

Therefore φ : ker ∆k → Hk
dR(M) is an isomorphism.
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Conclusion

In this talk, we have:

I Given an intuitive explanation of all of the terminology
necessary to understand the Hodge Decomposition Theorem.

I Explained the relationship between the Hodge Laplacian and
De Rham Cohomology.

I Proved that the kernel of the Hodge Laplacian is isomorphic
to the De Rham Cohomology Groups of M.
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Conclusion
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De Rham Cohomology.

I Proved that the kernel of the Hodge Laplacian is isomorphic
to the De Rham Cohomology Groups of M.
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Conclusion

In this talk, we have:

I Given an intuitive explanation of all of the terminology
necessary to understand the Hodge Decomposition Theorem.

I Explained the relationship between the Hodge Laplacian and
De Rham Cohomology.

I Proved that the kernel of the Hodge Laplacian is isomorphic
to the De Rham Cohomology Groups of M.
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Conclusion

In this talk, we have:

I Given an intuitive explanation of all of the terminology
necessary to understand the Hodge Decomposition Theorem.

I Explained the relationship between the Hodge Laplacian and
De Rham Cohomology.

I Proved that the kernel of the Hodge Laplacian is isomorphic
to the De Rham Cohomology Groups of M.
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Thank You!
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