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The Hodge Decomposition Theorem

Theorem
Let (M, g) be a compact, Riemannian manifold. Then for each

k =1,...,n, the Hilbert space QK(M) of differential k-forms on M
admits an orthonormal decomposition:

QK(M) =im d @im & & ker Ay.

Where d denotes the exterior derivative, 6 denotes the
codifferential, and Ay = dé + dd is the Hodge Laplacian on M.

Corollary
Hi(M) 2 ker(Ay)
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» Topological information (De Rham Cohomology Groups) of M
can be inferred by knowing the kernel of the k-Laplacian Ay.

> In the case k = 0 (and sometimes k = 1), the spectrum of Ay
can be inferred from finite data sampled from M.

» One of the goals for my dissertation is to find a way to infer
for k > 0.
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Overview

Introduction to differential forms.

v

v

Define common operations A, *, on differential forms

v

Define the exterior derivative d as well as the codifferential §.
Construct the Hodge Laplacian A = dj + 6d
Define the De Rham Cohomology groups H*(M).

v

v

We will see how the Hodge Decomposition Theorem tells us that

H5 (M) = ker(Ay).
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Smooth manifolds

Let M be a smooth manifold of dimension n.

» Hausdorff, second countable topological space that is locally
homeomorphic to R”.

» Equipped with a smooth structure, so one can define smooth
functions on M.

Examples: R", spheres, torus
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Tangent Spaces

For each point p € M, one can define the tangent space at p
denoted T,M, which is a dimension n vector space.

T

Given a smooth map f : M — N, we obtain linear maps
dfp : ToM — Tg(,)N on each of the tangent spaces.
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Riemannian Manifolds

» A Riemannian manifold (M, g) is a smooth manifold together
with a choice of inner product (-, ), on each tangent space
T,M.

» This allows us to measure lengths and angles of vectors in

each tangent space, as well as the lengths of curves
v : [a, b] = M.
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Differential Forms

Let M be a smooth manifold of dimension n:

» A differential n-form on M is like choosing a determinant on
each tangent space T,M.

det([v;1v,1v;]) = Volume

» The determinant is multilinear.

» The determinant is alternating: If | plug in a set of linearly
dependent vectors vy, ..., V,, then the determinant is zero.
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Differential Forms

Let M be a smooth manifold of dimension n:

» Formally, a differential n-form w is a choice of alternating,
multilinear map

wp: TpMx ... x ToM — R

for each p € M. Meaning that wy is zero whenever a linearly
dependent set of vectors is inputted. We also require w), to
vary smoothly across M a function of p.

» Intuitively, this is a way to measure “volume” in each tangent
space.
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The Riemannian Volume Form

Now let (M, g) be an (orientable) Riemannian manifold of
dimension n.

» There is an obvious choice for an n-form.

> If we take an orthonormal set {vi, .., v,} of vectors in T,M,
the hypercube spanned by the vectors “should” have volume
1.

» There exists a unique n-form on M with this property, called
the Riemannian volume form, denoted V.

» Vg is the differential form that assigns unit volume to unit
hypercubes in each T,M.
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Now M be a manifold of dimension n and let k < n.
> Let {e1,...,ep} be a basis for T,M.
» Example: Let vi,vo € T,M and Denote el Ae?(vi, vp) as the
2-d volume of the square formed by projecting v; and v» onto
the subspace formed by e; and e».
» el A e?is a 2-form. (Assuming we construct it across all
ToM.)
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k-forms

» For any choice of k unique basis vectors {ej, ..., €}, | can
define e A ... A €’ in the same manner to measure the k
dimensional area of vectors in the subspace spanned by
€y eeny €

> For technical reasons, we always choose iy to be strictly
increasing.

» Each such et A ... A e’ can be added and scalar multiplied.
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» A differential k-form w can be written as:

w = Z fe!

I:(il)'“’ik)

where e/ = et A .. A e and f; : M — R is smooth. (The f;
represent a choice of linear constants for each fixed 7,M that
varies smoothly across M.)

» The set of all differential k-forms on a manifold M is denoted
Qk(M).
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The set Q%(M) is (}) dimensional over C>®M.

> There are (]) ways to select e/, and the set of e’ are a
pointwise basis for Q*(M).

» Functions in C°°(M) denote a way to choose linear constants
over each T,M.

» In the case k = 0, we define Q°(M) = C>=(M).
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The Exterior Derivative

» The Exterior derivative d, maps k-forms to k + 1 forms.

» The Fundamental Theorem of Calculus exists on manifolds,
and is stated in terms of d (Stokes’ Theorem).

/dw:/ w
M oM
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The Exterior Derivative

» When k = 0, a differential form is simply a smooth function
f: M — R. This induces a linear map on tangent spaces:

dfy: ToM — TrpR =R

» df, is 1-multilinear, alternating, and varies smoothly as a
function of p. Thus, it is a 1-form!
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The Exterior Derivative

» If wis a k-form and we write:

then we define dw as:

dw = Z dfi A el
1=(i1,00i)

> We take the O-form f;, make it into a 1-form, then “glue” it
to e’ with the wedge product, making a k + 1 form.
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The Exterior Derivative

> In practice, we need to know more algebra to compute dw.
» Fun Facts:

1. If f is a constant function, df = 0.
2. d is linear over R.
3. dki1(dkw) = 0 for any w € QK(M).

dod=0.
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De Rham Cohomology

> dii1(dkw) = 0 implies that ker di41 C im dy.
> Define er d
€rdi+1
Hip(M) = ——=.
ln(M) =
> HX.(M) is a (possibly infinite-dimensional) vector space over

R, called the k-th de Rham Cohomology group of M.

v

The dimension of HX-(M) roughly counts the number of
k-dimensional holes in M.
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The Hodge Decomposition Theorem

Theorem
Let (M, g) be a compact, Riemannian manifold. Then for each

k =1,...,n, the Hilbert space QK(M) of differential k-forms on M
admits an orthonormal decomposition:

QK(M) =im d @im & & ker Ay.

Where d denotes the exterior derivative, 6 denotes the
codifferential, and Ay = dé + dd is the Hodge Laplacian on M.

Corollary
HA-(M) = ker(Ag)
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The Codifferential

The codifferential  is a map:
5 QM) = Q1(Mm)
defined by:

Sw = (=1)"=RFL s f 5 0,

» Fun Facts:

1. § is linear over R
2. 606=0

Definition
The k-th Hodge Laplacian Ay : QX(M) — Q%(M) is the mapping

Ay =dd+ dé.

Ryan Vaughn The Hodge Decomposition Theorem



The Hodge Star

Let ey, ..., e, be an orthonormal basis for T,M. Then we see that
1 n
Ve=e AN...Ne
which measures the n-dimensional volume such that
Ve(er,...,en) = 1.

Suppose we take e A ... A ek, We can determine Vg if we also
know e/t A ... A el—k where the j;'s are the indices that are

complementary to iy, ..., ik.
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The Hodge Star

The Hodge star * : QX(M) — Q""%(M) maps a k-form w to
xw € Q"7K(M) such that

WA *w = Vg.

This mapping is an isomorphism! so QK(M) = Q"=k(M).
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The Codifferential

The codifferential § = (—1)"("=k)+1 « dx can be explained by the
following process:
1. Ignore (—1)"("=F)+1 it's there for algebraic reasons.
2. Imagine a k-form w as a way to measure k-dimensional
subspace of a hypercube.

3. Instead of using k, measure the complementary
n — k-dimensional volume of the hypercube given by *w.

4. Take the exterior derivative of xw which gives an n — (k — 1)
dimensional volume.

5. Imagine the volume of the complementary (k — 1)-dimensional
volume which is given by xd * w.
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The Inner Product on Q*(M)

We can now define an inner product on QX(M) by:

= [

» With respect to this inner product, ¢ is the adjoint to d. For
all w € QF=1(M) and ,n € QK(M)

(dwv 77) = (w7 577)
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The Hodge Decomposition Theorem

Theorem
Let (M, g) be a compact, Riemannian manifold. Then for each

k =1,...,n, the Hilbert space QK(M) of differential k-forms on M
admits an orthonormal decomposition:

QK(M) =im d @im & & ker Ay.

Where d denotes the exterior derivative, 6 denotes the
codifferential, and Ay = dé + dd is the Hodge Laplacian on M.

Corollary
Hi(M) 2 ker(Ay)
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Proof of the Corollary

Corollary
Hig(M) = ker(A)
Proof:
» We will show that the mapping
¢ ker A — HE(M) = ir:e;j_kl
defined by:
P(w) = [«]
is bijective.
» Decompose w:
$(w) = [w]

= [wg + ws + wa]
= [wq] + [ws] + [wa]
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Proof of the Corollary

Claim: [wq] = [0]
Proof: wy € im di_q
Claim: ws =0

Proof: Take the exterior derivative.We know dw = 0.

0 =dw = dwyg + dws + dwa.
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Proof of the Corollary

Claim: [wy] = [0]
Proof: wy € im di_1
Claim: ws =0

Proof: Take the exterior derivative. We know dw = 0.

0=dw=dodn +dodn + dwa.
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Proof of the Corollary

Claim: [wy] = [0]
Proof: wy € im di_1
Claim: ws =0

Proof: Take the exterior derivative. We know dw = 0.

0=0+dodn + dwa.
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Proof of the Corollary

Claim: [wy] = [0]
Proof: wy € im dy_q
Claim: ws =0

Proof: Take the exterior derivative. We know dw = 0.

0=0+4dodn + dwa.

(AkwA, wA) =0
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Proof of the Corollary

Claim: [wy] = [0]
Proof: wy € im dy_q
Claim: ws =0

Proof: Take the exterior derivative. We know dw = 0.

0=0+4dodn + dwa.

((d(S + 5d)wA,wA) =0
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Proof of the Corollary

Claim: [wy] = [0]
Proof: wy € im dy_q
Claim: ws =0

Proof: Take the exterior derivative. We know dw = 0.

0=0+4dodn + dwa.

(déwA,wA) + (5de,wA) =0
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Proof of the Corollary

Claim: [wy] = [0]
Proof: wy € im dy_q
Claim: ws =0

Proof: Take the exterior derivative. We know dw = 0.

0=0+4dodn + dwa.

(dwa,dwa) + (dwa, dwa) =0
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Proof of the Corollary

Claim: [wy] = [0]
Proof: wy € im dy_q
Claim: ws =0

Proof: Take the exterior derivative. We know dw = 0.

0=0+4dodn + dwa.

[6wall? + [|dwal[> = 0
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Proof of the Corollary

Claim: [wy] = [0]
Proof: wy € im dy_q
Claim: ws =0

Proof: Take the exterior derivative. We know dw = 0.

0=0+dodn+0.

[6wall? + [|dwal[> = 0
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Proof of the Corollary

Claim: [wy] = [0]
Proof: wy € im dy_q
Claim: ws =0

Proof: Take the exterior derivative. We know dw = 0.

0=dodn.

(dodnp,m) =0
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Proof of the Corollary

Claim: [wy] = [0]
Proof: wy € im dy_q
Claim: ws =0

Proof: Take the exterior derivative. We know dw = 0.

0=dodn.

(0m2,0m2) =0
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Proof of the Corollary

Claim: [wy] = [0]
Proof: wy € im dy_q
Claim: ws =0

Proof: Take the exterior derivative. We know dw = 0.

0=dodn.

(ws,ws) =0
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Proof of the Corollary

Claim: [wy] = [0]
Proof: wy € im dy_q
Claim: ws =0

Proof: Take the exterior derivative. We know dw = 0.

0=0+dodn+0.

leos|* = 0

Ryan Vaughn The Hodge Decomposition Theorem



Proof of the Corollary

Claim: [wq] = [0]
Proof: wy € im di_q
Claim: ws =0

Proof: Take the exterior derivative. We know dw = 0.

0=04+dodn +0.

ws =0
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Proof of the Corollary

Corollary
Hig(M) = ker(A)
Proof:
» We will show that the mapping
¢ ker A — HE(M) = ir:e;j_kl
defined by:
P(w) = [«]
is bijective.
» Decompose w:
$(w) = [w]

= [wg + ws + wa]
= [wq] + [ws] + [wa]
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Proof of the Corollary

Corollary
Hi(M) = ker(Ay)
Proof:
> Injective: Let w € ker Ay be such that
¢(w) = [0].
We have:

$(w) = [w] = [wa] + [ws] + [wal
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Proof of the Corollary

Corollary
Hi(M) = ker(Ay)
Proof:
> Injective: Let w € ker Ay be such that
¢(w) = [0].
We have:

$(w) = [w] = [wd] + [0] + [wal.
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Proof of the Corollary

Corollary
Hi(M) = ker(Ay)
Proof:
> Injective: Let w € ker Ay be such that
¢(w) = [0].
We have:

¢(w) = [w] = [0] + [0] + [wa]-
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Proof of the Corollary

Corollary
Hi(M) = ker(Ay)
Proof:
> Injective: Let w € ker A, be such that
¢(w) = [0]-
We have:

¢(w) = [w] = [wa] = [0].

Therefore wa = 0.
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Proof of the Corollary

Corollary
HA- (M) 22 ker(Ag)
Proof:
» Surjective: Let [w] € H5.(M). Then

¢(wa) = [0] + [0] + [wal.

p(wa) = [wd] + [ws] + [wal
= [w]

Therefore ¢ : ker Ay — H4(M) is an isomorphism.



Proof of the Corollary

Corollary
HA- (M) 22 ker(Ag)
Proof:
» Surjective: Let [w] € H5.(M). Then

¢(wa) = [0] + [0] + [wal.

p(wa) = [wa] + [ws] + [wal
= [w]
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Proof of the Corollary

Corollary
HA- (M) 22 ker(Ag)
Proof:
» Surjective: Let [w] € H5.(M). Then

¢(wa) = [0] + [0] + [wal.

p(wa) = [wa] + [ws] + [wal
= [w]

Therefore ¢ : ker Ay — H4(M) is an isomorphism.
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Conclusion

In this talk, we have:
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Conclusion

In this talk, we have:

» Given an intuitive explanation of all of the terminology
necessary to understand the Hodge Decomposition Theorem.
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Conclusion

In this talk, we have:

» Given an intuitive explanation of all of the terminology
necessary to understand the Hodge Decomposition Theorem.

» Explained the relationship between the Hodge Laplacian and
De Rham Cohomology.
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Conclusion

In this talk, we have:

» Given an intuitive explanation of all of the terminology
necessary to understand the Hodge Decomposition Theorem.

» Explained the relationship between the Hodge Laplacian and
De Rham Cohomology.

» Proved that the kernel of the Hodge Laplacian is isomorphic
to the De Rham Cohomology Groups of M.
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