TJHSST Differential Equations / Math 214 - Syllabus - Spring 2007 - Dr. Sachs

TEXT: Elementary Differential Equations w/ Boundary Value Problems, 7th Ed. by Boyce and DiPrima (Wiley).

COURSE OVERVIEW: The main goals of this course are to introduce the basic ideas and techniques of differential equations. Single ordinary differential equations of first-order will be the starting point of the course, which will then extend those ideas to higher order equations and systems of equations. Links to various applications and also structural issues will be considered. Some visualization of systems will use computer software and we will use java applets (pplane and dfield by J. Polking). Linear algebra concepts will be used, including eigenvalues and eigenvectors. We will look at Fourier series as a tool for solving boundary value problems and simple partial differential equations (time permitting).

GRADING: Grading will be fair and impartial. Points used as the basis of the grade will be:
Hmwk. (300 pts.); Class (100 pts.); projects (50 pts.); Exams (400 pts.); Final exam (150 pts.).

POLICIES: The GMU and TJ Honor codes are in effect at all times and students are expected to be fully aware of their requirements. Graded group work may be part of the course, in which case group members will truthfully report on non-contributing members. Absence from quizzes and exams must be for a valid reason and requires prior notification except in extreme circumstances.

MATERIAL COVERED AND TENTATIVE PACE

Chapter 1 (all); 1 week
Chapter 2 (sections 1-8); 2 weeks
Chapter 3 (all); 3 weeks
Chapter 4 (all); 1 week
Chapter 5 (sections 1-5); 2 weeks
Chapter 6 (all); 2.5 weeks
Chapter 7 (all); Extra material on Laplace transform for systems and the resolvent of a square matrix. 3 weeks

Chapter 8 (sections 1-6); 1.5 weeks
Chapter 9 (sections 1-5); extra material on structure of gradient systems and simple Hamiltonian systems; introduction to the index of a critical point (2-D). 3 weeks
Chapter 10 (sections 1-4); extra material on complex form for Fourier series; finite Fourier transform. 2 weeks

