Fundamentals of Complex Analysis
for Mathematics, Science, and Engineering

E. B. SAFF
Distinguished Research Professor of Mathematics
University of South Florida

A. D. SNIDER
Professor of Electrical Engineering
University of South Florida

With an appendix by
LLOYD N. TREFETHEN
Associate Professor of Computer Science
Cornell University

Prentice Hall, Upper Saddle River, New Jersey 07458
Contents

Preface ix

1 Complex Numbers 1

1.1 The Algebra of Complex Numbers 1
1.2 Point Representation of Complex Numbers:
 Absolute Value and Complex Conjugates 6
1.3 Vectors and Polar Forms 12
1.4 The Complex Exponential 21
1.5 Powers and Roots 27
1.6 Planar Sets 32
*1.7 Some Applications of Complex Variables
 in Mechanics 36
Summary 40
Suggested Reading 41
2 Analytic Functions 42

2.1 Functions of a Complex Variable 42
2.2 Limits and Continuity 46
2.3 Analyticity 51
2.4 The Cauchy-Riemann Equations 58
2.5 Harmonic Functions 63
*2.6 Steady-State Temperature as a Harmonic Function 70
Summary 73
Suggested Reading 74

3 Elementary Functions 75

3.1 The Exponential, Trigonometric, and Hyperbolic Functions 75
3.2 The Logarithmic Function 81
3.3 Complex Powers and Inverse Trigonometric Functions 88
*3.4 Application to Oscillating Systems 94
Summary 100
Suggested Reading 101

4 Complex Integration 102

4.1 Contours 102
4.2 Contour Integrals 114
4.3 Independence of Path 124
4.4 Cauchy's Integral Theorem 130
4.5 Cauchy's Integral Formula and Its Consequences 152
4.6 Bounds for Analytic Functions 162
*4.7 Applications to Harmonic Functions 169
Summary 178
Suggested Reading 179
5 Series Representations for Analytic Functions 181

5.1 Sequences and Series 181
5.2 Taylor Series 187
5.3 Power Series 197
5.4 Mathematical Theory of Convergence 205
5.5 Laurent Series 211
5.6 Zeros and Singularities 218
5.7 The Point at Infinity 227
5.8 Analytic Continuation 232
Summary 242
Suggested Reading 243

6 Residue Theory 245

6.1 The Residue Theorem 245
6.2 Trigonometric Integrals over [0, 2π] 251
6.3 Improper Integrals of Certain Functions over (−∞, ∞) 255
6.4 Improper Integrals Involving Trigonometric Functions; Jordan's Lemma 265
6.5 Indented Contours 272
6.6 Integrals Involving Multiple-Valued Functions 280
6.7 The Argument Principle and Rouché's Theorem 288
Summary 299
Suggested Reading 300

7 Conformal Mapping 301

7.1 Invariance of Laplace's Equation 301
7.2 Geometric Considerations 308
7.3 Möbius Transformations 315
7.4 Möbius Transformations, Continued 327
7.5 The Schwarz-Christoffel Transformation 338
7.6 Applications in Electrostatics, Heat Flow, and Fluid Mechanics 349
7.7 Further Physical Applications of Conformal Mapping 361
Summary 368
Suggested Reading 369

*8 The Transforms of Applied Mathematics 371

8.1 Fourier Series (The Finite Fourier Transform) 372
8.2 The Fourier Transform 388
8.3 The Laplace Transform 399
8.4 The z-Transform 408
8.5 Cauchy Integrals and the Hilbert Transform 415
Summary 427
Suggested Reading 428

Appendix I Numerical Construction of Conformal Maps 430

I.1 The Schwarz-Christoffel Parameter Problem 431
I.2 Examples 434
I.3 Numerical Integration 439
I.4 Conformal Mapping of Smooth Domains 442
Suggested Reading 443

Appendix II Table of Conformal Mappings 444

II.1 Möbius Transformations 444
II.2 Other Transformations 446

Answers to Odd-Numbered Problems 450

Index 465