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Introduction

@ Many students find this topic difficult

@ Teaching history of math for first time: Euler, Cauchy, Sturm,
Weierstrass, Fischer, Weyl, Courant

@ In usual proof orthogonality is “accidental” via symmetric matrix
and inner product

© Working on multivariable calculus book and want to do Lagrange
multiplier idea without assuming linear algebra
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REPRISE OF USUAL ARGUMENTS

@ Three main strategies: algebraic, analytic, computational

@ Algebraic works from Invariant Subspaces, Minimal
Polynomial, Show Orthogonality, Geometric and Algebraic
Dimensions Equal.

@ Analytic uses Lagrange Multipliers, Orthogonality constraints
(later seen inactive),

@ Numerical uses Givens Rotations (Euler for principal axes in
3-D), Orthogonality leads to symmetric diagonalization
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KEY BACKGROUND

@ Quadratic equations tied to matrix form: Q(v) = vI Hv with H
symmetric

@ n = 2 case is cute use of trig (more below) and the key step
@ Scaling quadratically suggests looking on unit sphere

@ Min and max on sphere are eigenvectors (Lagrange multipliers for
unit vector constraint)

@ Restrictions to subspaces are also quadratic forms
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@ Q(x,y) =ax? +2bxy + cy?
@ Matrix form:
(T (4 b r
b c

where r is position vector.

@ On unit circle, x = costandy = sint

@ Restricted formis a cos?t+ 2b cost sint + ¢ sin?t

@ Reexpressed as 25€ + 256cos 2t + bsin 2t and also as
ale 1 Acos(2t+ ¢)

o Amplitude A satisfies A2 = (2;2)2 + b2 = (2£2)2 4 (b? — ac)
which leads to description of max and min values as well as
average value over circle.

@ Orthogonality of min and max vectors is basic trig!
@ Role of discriminant / determinant in definiteness
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@ Consider three variable case

@ Max, min values are usual Lagrange multiplier rule (multivariable
calculus)

@ Third orthogonal direction as eigenvector less clear

@ Use previous step and restriction to any plane through origin ...
have orthogonality of restricted max, min directions
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@ Restricted form is a nice linear algebra calculation: if we look at
vectors svq + tvo in quadratic form, it becomes:

(s t)VTHV (f)

where V has vectors v4 and v, as columns. More on this at end.

@ Each plane containing origin has minimizing direction orthogonal
to maximizing direction, so if we max over mins on 2-D
subspaces with unit vector restriction, can restrict to a great circle
orthogonal to maximizing direction.

@ Key point: Claim that extreme vector is an eigenvector also ... i.e.
gradient is aligned in the direction of the vector.

R. Sachs (GMU) January 2011 7/21



@ In 3-D scenario, at minimax location, gradient of quadratic
vanishes in admissible variation direction (angular along great
circle)

@ Why can’t gradient have component in direction of maximal
eigenvector? Which direction? (both vector and its negative are
critical points, same value!)

@ Conclude: zero component BY REFLECTION SYMMETRY /
EVENNESS OF QUADRATIC!

@ This holds for all 3-planes in n dimensions — each comes
algebraically as having a symmetric matrix hence quadratic form
on restriction. Details later as time permits.
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@ For all 2-D subspaces, can take min-max or max-min which in 3-D
happen at the same place.

@ For higher dimensions, the min-max and max-min are typically
different.

@ Fischer seems to be the first to do this; Courant exploited it more
fully (a Wikipedia discussion on this is useless).

@ Continue inductively, building on higher dimensional subspaces
with orthogonality going up with dimension.
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@ STEP 1: Eigenvalues must be real.

@ Suppose not, then there is a complex conjugate pair of roots of
characteristic polynomial since matrix is real.

@ Complex eigenvalue implies complex eigenvector

@ Use complex conjugate and transpose together, i.e. Hermitian
conjugate, to get a contradiction, as follows:

@ v Av = AvT v from original equation Av = \v after left
multiplication by vT. But taking complex conjugate transpose of
Av = \v and then right multiplying by v we get (using A” = A and
A real) the same left hand side but on the right AvT v so we
conclude, since v # , that A = X
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Now there is a fork in the road — algebra proof vs. analysis proof. First
one of the algebra versions:

@ STEP 2a: Strip off rank one piece, look on orthogonal
complement of span of first eigenvector.

@ Show thatif v/ e; =, then (Av)" eq =
@ Done with our favorite algebraic lemma.

@ Create new orthonormal basis starting with e4 then write matrix in
that basis, find (n — 1) x (n— 1) block and Ay in upper corner with
rest of first row/column zeroed out.

@ STEP 3a: Continue in dimension n — 1, adding in first entry to get

back to original dimension. Find second eigenvector, repeat STEP
2a.
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@ STEP 2b: Find maximum with two constraints: unit vectors, also
orthogonal to first eigenvector.

@ Two Lagrange multipliers — one for unit vector (\) and a second
one for orthogonality (u).

@ Equation: Av = \v + neq
@ And then a miracle happens: 1 = by our favorite lemma.

@ Find second eigenvector, then add that constraint, which is also
inactive — repeat until done.
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@ In subspace the vectors are linear combinations of some basis
elements — columns of a rectangular matrix

@ View it as matrix product — algebra leads to restricted matrix of
form: CT A C where C has columns given by basis vector — new
matrix is lower rank, symmetric.
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@ Student question: What is gradient of v/ Av when A is square but
not symmetric?

@ Representative of equivalence class of A under similarity —issue
of transpose vs. inverse

@ Length of vectors in subspace squared (case of H = /) is useful in
thinking about surfaces, differential geometry (First Fundamental
Form)

@ Spherical and ultraspherical coordinates on unit n-sphere
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@ Attempt to develop theory for constrained max/min and Hessian
matrix

@ Eigenvalues of AT Awhen A is rectangular

@ Complex eigenvalues for non-symmetric real A — what do they
mean geometrically

@ For complex vector spaces, how is symmetric matrix extended?
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@ Non-symmetric matrices and Jordan form
@ Schur Factorization

@ Ratios of quadratic expressions (non-zero denominator!) ties to
Curvature calculations on surfaces.

@ Classical view near max/min in 2-D: values taken on twice leads
to discriminant — classic principal curvatures computation.

@ Fun in number theory: quadratic forms — normal form using
integer lattice transformations

R. Sachs (GMU) January 2011 20/ 21



e Orthogonality now comes from 2-D geometry
exploited ruthlessly

e Rich area for visualization, experiment, conjecture
in high school

e Hate to banish really slick lemmas — love the
algebraic fun
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