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Introduction

1 Many students find this topic difficult

2 Teaching history of math for first time: Euler, Cauchy, Sturm,
Weierstrass, Fischer, Weyl, Courant

3 In usual proof orthogonality is “accidental” via symmetric matrix
and inner product

4 Working on multivariable calculus book and want to do Lagrange
multiplier idea without assuming linear algebra
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REPRISE OF USUAL ARGUMENTS

Three main strategies: algebraic, analytic, computational

Algebraic works from Invariant Subspaces, Minimal
Polynomial, Show Orthogonality, Geometric and Algebraic
Dimensions Equal.

Analytic uses Lagrange Multipliers, Orthogonality constraints
(later seen inactive),

Numerical uses Givens Rotations (Euler for principal axes in
3-D), Orthogonality leads to symmetric diagonalization
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KEY BACKGROUND

Quadratic equations tied to matrix form: Q(v) = vT H v with H
symmetric

n = 2 case is cute use of trig (more below) and the key step
Scaling quadratically suggests looking on unit sphere
Min and max on sphere are eigenvectors (Lagrange multipliers for
unit vector constraint)
Restrictions to subspaces are also quadratic forms
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THE CASE OF n = 2

Q(x,y) = a x2 + 2b x y + c y2

Matrix form:

rT
(

a b
b c

)
r

where r is position vector.
On unit circle, x = cos t and y = sin t
Restricted form is a cos2 t + 2 b cos t sin t + c sin2 t
Reexpressed as a+c

2 + a−c
2 cos 2t + b sin 2t and also as

a+c
2 + A cos(2t + φ)

Amplitude A satisfies A2 = (a−c
2 )2 + b2 = (a+c

2 )2 + (b2 − ac)
which leads to description of max and min values as well as
average value over circle.
Orthogonality of min and max vectors is basic trig!
Role of discriminant / determinant in definiteness
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MOVING UP A DIMENSION VIA MIN-MAX

Consider three variable case

Max, min values are usual Lagrange multiplier rule (multivariable
calculus)

Third orthogonal direction as eigenvector less clear

Use previous step and restriction to any plane through origin ...
have orthogonality of restricted max, min directions
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MOVING UP A DIMENSION AND THE
MIN-MAX ISSUE – cont.

Restricted form is a nice linear algebra calculation: if we look at
vectors sv1 + tv2 in quadratic form, it becomes:

(
s t

)
VT H V

(
s
t

)
where V has vectors v1 and v2 as columns. More on this at end.

Each plane containing origin has minimizing direction orthogonal
to maximizing direction, so if we max over mins on 2-D
subspaces with unit vector restriction, can restrict to a great circle
orthogonal to maximizing direction.

Key point: Claim that extreme vector is an eigenvector also ... i.e.
gradient is aligned in the direction of the vector.
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EIGENVECTOR CLAIM /
ORTHOGONALITY

In 3-D scenario, at minimax location, gradient of quadratic
vanishes in admissible variation direction (angular along great
circle)

Why can’t gradient have component in direction of maximal
eigenvector? Which direction? (both vector and its negative are
critical points, same value!)

Conclude: zero component BY REFLECTION SYMMETRY /
EVENNESS OF QUADRATIC!!

This holds for all 3-planes in n dimensions – each comes
algebraically as having a symmetric matrix hence quadratic form
on restriction. Details later as time permits.
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MIN-MAX VIEW OF EIGENVALUES

For all 2-D subspaces, can take min-max or max-min which in 3-D
happen at the same place.

For higher dimensions, the min-max and max-min are typically
different.

Fischer seems to be the first to do this; Courant exploited it more
fully (a Wikipedia discussion on this is useless).

Continue inductively, building on higher dimensional subspaces
with orthogonality going up with dimension.
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VISUALIZATIONS
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VISUALIZATIONS – continued
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VISUALIZATIONS – continued
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VISUALIZATIONS – continued
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SOME DETAILS OF USUAL PROOFS

STEP 1: Eigenvalues must be real.

Suppose not, then there is a complex conjugate pair of roots of
characteristic polynomial since matrix is real.

Complex eigenvalue implies complex eigenvector

Use complex conjugate and transpose together, i.e. Hermitian
conjugate, to get a contradiction, as follows:

v̄T A v = λ v̄T v from original equation A v = λv after left
multiplication by v̄T . But taking complex conjugate transpose of
A v = λv and then right multiplying by v we get (using AT = A and
A real) the same left hand side but on the right λ̄ v̄T v so we
conclude, since v 6= , that λ = λ̄
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SOME DETAILS OF USUAL PROOFS –
continued

Now there is a fork in the road – algebra proof vs. analysis proof. First
one of the algebra versions:

STEP 2a: Strip off rank one piece, look on orthogonal
complement of span of first eigenvector.

Show that if vT e1 = , then (Av)T e1 =

Done with our favorite algebraic lemma.

Create new orthonormal basis starting with e1 then write matrix in
that basis, find (n − 1)× (n − 1) block and λ1 in upper corner with
rest of first row/column zeroed out.

STEP 3a: Continue in dimension n − 1, adding in first entry to get
back to original dimension. Find second eigenvector, repeat STEP
2a.
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SOME DETAILS OF USUAL PROOFS –
continued

STEP 2b: Find maximum with two constraints: unit vectors, also
orthogonal to first eigenvector.

Two Lagrange multipliers – one for unit vector (λ) and a second
one for orthogonality (µ).

Equation: Av = λ v + µe1

And then a miracle happens: µ = by our favorite lemma.

Find second eigenvector, then add that constraint, which is also
inactive – repeat until done.
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SUBSPACE AND RESTRICTION

In subspace the vectors are linear combinations of some basis
elements – columns of a rectangular matrix

View it as matrix product – algebra leads to restricted matrix of
form: CT A C where C has columns given by basis vector – new
matrix is lower rank, symmetric.
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EXTENSION / INTEGRATION

Student question: What is gradient of vT A v when A is square but
not symmetric?

Representative of equivalence class of A under similarity – issue
of transpose vs. inverse

Length of vectors in subspace squared (case of H = I) is useful in
thinking about surfaces, differential geometry (First Fundamental
Form)

Spherical and ultraspherical coordinates on unit n-sphere
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EXTENSION / INTEGRATION – cont.

Attempt to develop theory for constrained max/min and Hessian
matrix

Eigenvalues of AT A when A is rectangular

Complex eigenvalues for non-symmetric real A – what do they
mean geometrically

For complex vector spaces, how is symmetric matrix extended?
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EXTENSION / INTEGRATION (continued)

Non-symmetric matrices and Jordan form

Schur Factorization

Ratios of quadratic expressions (non-zero denominator!) ties to
Curvature calculations on surfaces.

Classical view near max/min in 2-D: values taken on twice leads
to discriminant – classic principal curvatures computation.

Fun in number theory: quadratic forms – normal form using
integer lattice transformations
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CONCLUDING REMARKS

Orthogonality now comes from 2-D geometry
exploited ruthlessly

Rich area for visualization, experiment, conjecture
in high school

Hate to banish really slick lemmas – love the
algebraic fun
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