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Introduction

Genesis of the idea – teaching numerical analysis at magnet high
school – a standard topic is polynomial interpolation. Running a
circle for students and planning one for teachers too.

Lots of interesting aspects: Newton used a divided difference
table (a contentless version of which seems to propagate in high
school curriculum) – ties into discrete calculus.
Lagrange version finds dual basis to evaluation at points – not as
useful in practice, especially due to updating issue.
I ended up rethinking the Newton idea as a recursive algorithm,
which led to another set of topics tied to divisibility of p(x)− p(a)
by x − a – a wide ranging set of related ideas!
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First Circle – Polynomial guessing: Who am I?

Had a student pick a polynomial of fixed degree with coefficients
bounded by some number (group chose it). Had to have linear
factors with integer coefficients. Others had to guess it by asking
for values at given inputs of their choice.

They were not so great at the game, but had some fun. I hoped
two questions spontaneously arise: what is the least number of
values needed to pin down the mystery polynomial? How would
you actually express it?
The older kids eventually went to some sytem of linear equations
for coefficients of polynomial, ended up with a Vandermonde
matrix – couldn’t quite convince themselves it was invertible
without some help.
Didn’t quite get to determinant of it – which is linked to Lagrange
form. Never hit on recursive idea – which is Newton (slight variant
of usual table).
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Was it a success?

Yes, in that they had fun, were trying things, thinking.

No, in terms of getting to the deeper mathematics

Looking for some suggestions – the factored part should have led
to deeper insights by factoring the values (How do the factors
grow – so if factoring 4x2 + Bx + C either both have 2x or one is
an x and the other a 4x , should be easy to see which).

Schools often have a bad version of this for rational roots, given
the polynomial.
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The first of many roads not taken

Here are some of the ways this circle could go (tried to anticipate them)

The idea of divisibility – look at

P(x) = P(a) + (P(x)− P(a))

and use it

This leads to Newton interpolation using nested form of polynomial
(recursive solution), namely use P(x1) at first interpolation point, then
factor form of P(x)− P(x1) leads to recursion (values at remaining
points for adjusted polynomial form).

Difference quotient comes into play – here automatically nice since
polynomials, but an entry into calculus!
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Interpolation done recursively

P(x) = P(x1) + (x − x1) · P1(x)

where P1 takes on values

P1(xj) =
P(xj)− P(x1)

xj − x1
for j = 2,3, . . . ,n

A new interpolation problem, one degree lower, one fewer point.
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Interpolation done recursively – next level

P(x) = P(x1) + (x − x1) ·
(
P1(x2) + (x − x2) · P12(x)

)
where P12 takes on values

P12(xj) =
P1(xj)− P1(x2)

xj − x2
for j = 3,4, . . . ,n

A newer interpolation problem, one degree lower, one fewer point.
Continuing on leads to a nested form solution of the interpolation
problem. Naturally there are some good questions to ask: order of
points, uniqueness, updating with an extra point/ one degree higher,
might introduce idea of linear algebra – various bases for polynomials.
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Some interesting aspects

Recursive version breaks the symmetry of the interpolation
problem.

Usual divided difference table doesn’t show all differences and
has no entries like the recursive form.

Recursive view with one point repeatedly leads to Taylor
polynomial for a polynomial.

What about p(x)− p(x − 1) (finite difference but also table of
values idea at any points with separation of size 1)?

R. Sachs (GMU) Polynomials as math circle topics August 2011 8 / 20



Some interesting aspects

Recursive version breaks the symmetry of the interpolation
problem.

Usual divided difference table doesn’t show all differences and
has no entries like the recursive form.

Recursive view with one point repeatedly leads to Taylor
polynomial for a polynomial.

What about p(x)− p(x − 1) (finite difference but also table of
values idea at any points with separation of size 1)?

R. Sachs (GMU) Polynomials as math circle topics August 2011 8 / 20



Some interesting aspects

Recursive version breaks the symmetry of the interpolation
problem.

Usual divided difference table doesn’t show all differences and
has no entries like the recursive form.

Recursive view with one point repeatedly leads to Taylor
polynomial for a polynomial.

What about p(x)− p(x − 1) (finite difference but also table of
values idea at any points with separation of size 1)?

R. Sachs (GMU) Polynomials as math circle topics August 2011 8 / 20



Some interesting aspects

Recursive version breaks the symmetry of the interpolation
problem.

Usual divided difference table doesn’t show all differences and
has no entries like the recursive form.

Recursive view with one point repeatedly leads to Taylor
polynomial for a polynomial.

What about p(x)− p(x − 1) (finite difference but also table of
values idea at any points with separation of size 1)?

R. Sachs (GMU) Polynomials as math circle topics August 2011 8 / 20



Taylor polynomial – key idea

Using recursive division idea with repeated use of one input value
yields Taylor polynomial (for a polynomial).

Example: Let p(x) = x3, done in powers of x − 1 using values at
x = 1, we get:

x3 − 1 = (x − 1)(x2 + x + 1) note sum of powers

x2 + x + 1− (1 + 1 + 1) = (x − 1)(x + 1 + 1) = (x − 1)(x + 2)
x + 2− (1 + 2) = x − 1

x3 − 1 = (x − 1)(3 + (x − 1)(3 + (x − 1)))

which is binomial / Taylor polynomial expansion of x3 about x = 1,
done purely recursively. Clearly extends to power xn for positive
integer n.
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Other aspects of interpolation

Leads naturally to nested multiplication – efficient evaluation in
terms of operation count

Also introduces for algebraic setting the slope of the secant line –
in a fun way.

Since degree decreases, get a proof of usual bad high school
description of how to find degree of a polynomial from data values.

Opens up a lot of alternate questions, especially the following
ones.
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Can we generalize? Yes – Discrete (difference)
calculus

How about the -1 power? Get a fun recursion that leads to
geometric series of powers.

How about the 1/2 power? The -1/2 power? Other negative
powers?

Biggie: how about f (x)? Important calculus notion (proving chain
rule, e.g.)

How about real numbers? Complex?

Contemplating a session that opens with some examples, then
division claim. Then tell them: do something interesting with it.
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Case of 1/x

For the function f (x) = 1/x , we find for x = 1 expansion (easiest
algebra):

1
x
− 1 =

1− x
x

= −(x − 1)
1
x

which involves the same function we had, so it is a simple recursion to
get an infinite series (our favorite, the geometric series!)

Recursively we find:

1
x
= 1− (x − 1) + (x − 1)2 − (x − 1)3 + . . .

as a purely formal algebraic process, perhaps with some motivation.
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Case of 1/x2

For the function f (x) = 1/x2, we find for x = 1 expansion (easiest
algebra):

1
x2 − 1 =

1− x2

x2 = −(x − 1)
1 + x

x2

which involves both the function we have and also the previous case of
1/x .

Recursively we find:

1
x2 = 1− (x − 1) + 2(x − 1)2 − 3(x − 1)3 + . . .

as a purely formal algebraic process again.
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Case of 1/P(x)

The last two situations can be extended (at least for the first term) as
follows: For the function f (x) = 1/P(x) where P is a polynomial, we

find for x = 1 expansion (easiest algebra):

1
P(x)

− 1
P(1)

=
P(1)− P(x)

P(x)P(1)
= −(x − 1)

1
P(1)P1(x)

which now involves the new polynomial P1 in the denominator.

Recursively for the next step we find:

1
P1(x)

− 1
P1(1)

=
P1(1)− P1(x)

P1(x)P1(1)

= −(x − 1)
1

P1(1)P11(x)

which can continue for an infinite series expansion.
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Case of P(x)Q(x) – the product rule

Another extension is the product rule. Easiest way is to multiply the
two Taylor polynomials, but otherwise it goes as follows: For the

function f (x) = P(x)Q(x) where P and Q are polynomials, we find for
x = 1 expansion (easiest algebra):

P(x)Q(x)− P(1)Q(1) = (P(x)− P(1))Q(x) + P(1)(Q(x)−Q(1))
= (x − 1)

(
P1(x ,1)Q(x) + P(1)Q1(x ,1)

)

which works but is not symmetric, so one might prefer a more
symmetric form at the expense of more algebra.
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Case of N(x)/P(x) – the quotient rule

Another extension (at least for the first term, though more in principle)
as follows: For the function f (x) = N(x)/P(x) where N and P are

polynomials, we find for x = 1 expansion (easiest algebra):

N(x)
P(x)

− N(1)
P(1)

=
N(x)P(1)− N(1)P(x)

P(x)P(1)

which now involves more intricate algebra which we omit. In calculus
class, I prefer it as product rule of N and 1/P.
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Case of P(Q(x)) – the chain rule

Another extension is the chain rule. This one goes nicely in factored
form (one stage only): For the polynomial function f (x) = P(Q(x))

where P and Q are polynomials, we find for x = 1 expansion (easiest
algebra), with b = Q(1):

Q(x)−Q(1) = u − b = (x − 1)Q1(x)
P(u)− P(b) = (u − b)P1(u,b)

P(Q(x))− P(Q(1)) = (u − b)P1(u,b) = (x − 1)Q1(x)P1(u,b)

The limits both exist and so this is the discrete version of the chain rule:

P(Q(x))− P(Q(1))
x − 1

= Q1(x)P1(Q(x),b)
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Case of x
1
2

For the function f (x) =
√

x , we find for x = 1 expansion (easiest
algebra):

√
x − 1 = (x − 1)

1√
x + 1

Next step we find:

1√
x + 1

=
1
2
+ (

1√
x + 1

− 1
2
)

which can be evaluated, bit harder algebra. This can also be viewed as
inverse function difference question:
Let y = f (x) =

√
x , we find for y = 1 expansion instead(easiest

algebra):

f1(x) =
√

x − 1
x − 1

=
y − 1
y2 − 1

=
1

1 + y
which is of course the algebraic form of differencing the inverse
function to g(y) = y2.
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Partial fractions

For factored denominators with simple roots, can relate above to
partial fraction expansion.

For the function f (x) = 1/(x − 1)(x − a), we find for x = 1 expansion
(easiest algebra):

1
x − a

− 1
1− a

=
1− x

(x − a)(1− a)
= −(x − 1)

1
(x − a)(1− a)

which then leads easily to the correct partial fraction version:

1
(x − a)(x − 1)

=
1

1− a
1

x − 1
− 1

1− a
1

x − a

Similarly we can find the expansion for x
(x−1)(x−a) , so we are done for

two roots!
Recursively can peel off singular parts at each pole in fraction. Also
works for higher order roots and for repeated quadratic factors (using a
suitable generalization).
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Concluding remarks

Students were a bit timid about conjecturing / theorizing, better in
numerical realm.

Happy to work on examples – need prodding to go deeper.

Balancing act between leading questions and open exploration –
I’m still learning how to do it.

For instance, how to balance case near x = 1 versus general
location x = a; General polynomial versus particular examples; it’s
a fine art to extract general cases from specifices – not clear to
me how to cultivate that best.

Improvisational math is not easy to lead, but lots of fun to
experiment with!

Thanks for any suggestions / advice / feedback from your
experiences with these ideas
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