Math 675, Fall 2012, Homework 1

Due: Thursday, Sept. 6

1. Textbook, Section 5, problem 1 (pg. 45)
2. Textbook, Section 5, problem 3 (pg. 45)
3. Textbook, Section 5, problem 6 (pg. 45)
4. Textbook, Section 5, problem 7 (pg. 45)
5. Stereographic projection creates a strange metric for the usual 2-D plane of points (x, y) by considering it in 3-D as points of the form $(x, y, 0)$ and creating a 1:1 mapping to points other than $(0,0,1)$ on the unit sphere in $3-D$. You do this by finding the unique other point on the unit sphere in 3-D which lies on the line segment connecting $(x, y, 0)$ to $(0,0,1)$. Write out this function. Then use the usual Euclidean distance between points in 3-D to find a strange distance formula for the plane by defining the strange distance between points in the plane as the Euclidean distance between their images on the sphere. Explain why is this a metric for the plane. Since the point $(0,0,1)$ has no image in the plane, we say it then corresponds to "an ideal point at ∞ " and we have what is known as a one-point compactification of the original plane. Find as well the distance formula between (x, y) and the point at ∞ also.
6. Textbook, Section 6, problem 2 (pp. 53-54)
7. Textbook, Section 6, problem 3 (pp. 53-54)
