MATH 290, Section 001	Name Solutions	
Fall, 2011		
Exam 3	Student ID number	

1. Define a relation R on the set \mathbb{N} of natural numbers by xRy if and only if $x|y^2$. Determine whether or not R is a partial order on \mathbb{N} and explain your answer

Since, for example, $2|4^2$ and $4|2^2$, letting x = 2 and y = 4 gives xRy and yRx even though $x \neq y$. Therefore, R is not anti-symmetric, so it is not a partial order.

 $\Box R$ is a partial order. $\boxtimes R$ is not a partial order

Explanation:

R is not anti-symmetric.

2. Let $f: \mathbb{Z} \to \mathbb{Z}$ be given by $f(n) = n^2 - 3n$. Find $f(\{2, 4, 6\})$. Be sure to use correct notation.

 $f(\{2,4,6\}) = \{f(2), f(4), f(6)\} = \{(2^2 - 6), (4^2 - 12), (6^2 - 18)\} = \{-2, 4, 18\}.$

Answer: $\{-2, 4, 18\}$

- 3. Let $f: \mathbb{Z} \to \mathbb{R}$ be given by $f(x) = \sqrt{|x|}$. Find $f^{-1}((0,2))$. ((0,2) is the interval $\{x \in \mathbb{R} : 0 < x < 2\}$.)
 - $\begin{array}{l} f^{-1}((0,2)) = \{n \in \mathbb{Z} \, : \, f(n) \in (0,2)\} = \{n \in \mathbb{Z} \, : \, 0 < \sqrt{|n|} < 2\} = \\ \{n \in \mathbb{Z} : \, 0 < |n| < 4\} = \{-3,-2,-1,1,2,3\}. \end{array}$

Answer: $\{-3, -2, -1, 1, 2, 3\}$ 4. Suppose X is a set and $A \subseteq X$. Prove that $\chi_{(X \setminus A)}(x) = \overline{1} + \chi_A(x)$ for all $x \in X$. (Here $\chi_S: X \to \mathbb{Z}_2$ is the characteristic function of S.)

Proof:

By the definition of the characteristic function, $\chi_A(x) = \overline{1} \Leftrightarrow x \in A$ and $\chi_{(X \setminus A)}(x) = \overline{1} \Leftrightarrow x \in X \setminus A$. If $x \in A$, $\chi_{(X \setminus A)}(x) = \overline{0} = \overline{1} + \overline{1} = \overline{1} + \chi_A(x)$. On the other hand, if $x \in X \setminus A$, then $\chi_{(X \setminus A)}(x) = \overline{1} = \overline{1} + \overline{0} = \overline{1} + \chi_A(x)$. Therefore, for any $x \in X$, $\chi_{(X \setminus A)}(x) = \overline{1} + \chi_A(x)$.

5. Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = x^2$. Find subsets A and B of \mathbb{R} such that $f(A \cap B) \neq f(A) \cap f(B)$.

There are many examples. For one, let $A = (-\infty, 0]$ and $B = [0, \infty)$. Then $A \cap B = \{0\}$ so $f(A \cap B) = \{0\}$, whereas $f(A) = f(B) = [0, \infty)$, so $f(A) \cap f(B) = [0, \infty)$.

Answer: $A = (-\infty, 0], B = [0, \infty)$

- 6. Let $f: \{1, 2, 3\} \to \mathbb{N}$ be the function $\{(1, 4), (2, 6), (3, 12)\}$ and let $g: \mathbb{N} \to \mathbb{R}$ be $g(x) = \frac{x}{2}$. Write the function $g \circ f: \{1, 2, 3\} \to \mathbb{R}$ as a set of ordered pairs.
 - $\begin{array}{ll} g \circ f(1) \,=\, g(f(1)) \,=\, g(4) \,=\, 2 \,, & g \circ f(2) \,=\, g(f(2)) \,=\, g(6) \,=\, 3 \,, \\ g \,\circ\, f(3) \,=\, g(f(3)) \,=\, g(12) \,=\, 6 \,, & \text{Therefore, } g \circ f \,=\, \{(1,2),(2,3),(3,6)\} \,. \end{array}$

$$g \circ f = \{(1,2), (2,3), (3,6)\}$$

In problems 7 and 8 determine whether the given function is one-to-one or onto. Check all boxes which apply, and no other boxes. Give reasons for your answers.

7. $f: \mathbb{Z} \to \mathbb{Z}$ given by f(n) = 2n + 3.

f is one-to-one because if $m \neq n$, then $2m \neq 2n$, so $2m + 3 \neq 2n+3$. f is not onto because f(m) is odd for all m so, for example, $\not\exists m$ such that f(m) = 6.

```
\square One-to-one \square Onto
```

```
8. f: [0, \infty) \to [1, \infty) given by f(x) = x^2 + 1.
```

f is one-to-one because $f(x) = f(y) \Rightarrow x^2 + 1 = y^2 + 1 \Rightarrow x^2 = y^2 \Rightarrow x = \pm |y| \Rightarrow x = y$ because x and y are both non-negative. f is onto because if $y \in [1, \infty)$, then $f(\sqrt{y-1}) = y$.

earrow One-to-one
arrow Onto

9. Determine if the function $f: \mathbb{Z}_6 \to \mathbb{Z}_6$ given by f(x) = 2x is a bijection. If f is a bijection, find its inverse, and if it is not a bijection, explain why it is not.

Inverse or explanation f is not a bijection because $f(\overline{0}) = \overline{0} = f(\overline{3})$ even though $\overline{0} \neq \overline{3}$. 10. Prove that if A is any set, then there is no surjection $f: A \to \mathcal{P}(A)$, that is, prove Cantor's Theorem. (Here $\mathcal{P}(A)$ is the power set of A.)

Proof:

Suppose that $f: A \to \mathcal{P}(A)$ were a surjection. Let $S = \{x \in A : x \notin f(x)\}$. Since f is onto, there is an $s \in A$ such that f(s) = S. Either $s \in S$ or $s \notin S$. If $s \in S$, then $s \notin f(s) = S$, a contradiction. If $s \notin S$, then $s \notin f(s)$, so $s \in S$, again a contradiction. Therefore, the onto function f cannot exist.

11. Use the definition of a countable set to prove that $\mathbb{N} \times \{0, 1\}$ is countable. (In other words, find a bijection between the given set and \mathbb{N} .)

Answer:

Define $f: \mathbb{N} \times \{0,1\} \to \mathbb{N}$ by f(m,n) = 2m - n. (Another way of saying this is that f(m,0) is 2m and f(m,1) = 2m - 1.) Then f is onto because if y is even, $y = f(\frac{y}{2},0)$ and if y is odd, $y = f(\frac{y+1}{2},1)$. f is one-to-one because if 2m - n =2m' - n', then n = n' because if one of these were 0 and the other were 1, then one of 2m - n and 2m' - n' would be even and the other would be odd. Therefore, 2m = 2m' so m =m'. This means that (m,n) = (m',n').