MATH 290, Section 001
Fall, 2011
Exam 3 Name $\qquad$ Solutions

Student ID number $\qquad$

1. Define a relation $R$ on the set $\mathbb{N}$ of natural numbers by $x R y$ if and only if $x \mid y^{2}$. Determine whether or not $R$ is a partial order on $\mathbb{N}$ and explain your answer

Since, for example, $2 \mid 4^{2}$ and $4 \mid 2^{2}$, letting $x=2$ and $y=4$ gives $x R y$ and $y R x$ even though $x \neq y$. Therefore, $R$ is not anti-symmetric, so it is not a partial order.
$\square R$ is a partial order.
$\boxtimes R$ is not a partial order

$$
\begin{aligned}
& \text { Explanation: } \\
& \quad R \text { is not anti-symmetric. }
\end{aligned}
$$

2. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be given by $f(n)=n^{2}-3 n$. Find $f(\{2,4,6\})$. Be sure to use correct notation.
$f(\{2,4,6\})=\{f(2), f(4), f(6)\}=\left\{\left(2^{2}-6\right),\left(4^{2}-12\right),\left(6^{2}-18\right)\right\}=$ $\{-2,4,18\}$.

Answer:

$$
\{-2,4,18\}
$$

3. Let $f: \mathbb{Z} \rightarrow \mathbb{R}$ be given by $f(x)=\sqrt{|x|}$. Find $f^{-1}((0,2))$. ( $(0,2)$ is the interval $\{x \in \mathbb{R}: 0<x<2\}$.)
$f^{-1}((0,2))=\{n \in \mathbb{Z}: f(n) \in(0,2)\}=\{n \in \mathbb{Z}: 0<\sqrt{|n|}<2\}=$ $\{n \in \mathbb{Z}: 0<|n|<4\}=\{-3,-2,-1,1,2,3\}$.

Answer:

$$
\{-3,-2,-1,1,2,3\}
$$

4. Suppose $X$ is a set and $A \subseteq X$. Prove that $\chi_{(X \backslash A)}(x)=\overline{1}+\chi_{A}(x)$ for all $x \in X$. (Here $\chi_{S}: X \rightarrow \mathbb{Z}_{2}$ is the characteristic function of $S$.)

Proof:
By the definition of the characteristic function, $\chi_{A}(x)=\overline{1} \Leftrightarrow x \in A$ and $\chi_{(X \backslash A)}(x)=\overline{1} \Leftrightarrow x \in X \backslash A$. If $x \in A, \chi_{(X \backslash A)}(x)=\overline{0}=\overline{1}+\overline{1}=\overline{1}+\chi_{A}(x)$. On the other hand, if $x \in X \backslash A$, then $\chi_{(X \backslash A)}(x)=\overline{1}=\overline{1}+\overline{0}=$ $\overline{1}+\chi_{A}(x)$. Therefore, for any $x \in X, \chi_{(X \backslash A)}(x)=$ $\overline{1}+\chi_{A}(x)$.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{2}$. Find subsets $A$ and $B$ of $\mathbb{R}$ such that $f(A \cap B) \neq f(A) \cap f(B)$.

There are many examples. For one, let $A=(-\infty, 0]$ and $B=$ $[0, \infty)$. Then $A \cap B=\{0\}$ so $f(A \cap B)=\{0\}$, whereas $f(A)=$ $f(B)=[0, \infty)$, so $f(A) \cap f(B)=[0, \infty)$.

$$
\begin{aligned}
& \text { Answer: } \\
& \qquad A=(-\infty, 0], B=[0, \infty)
\end{aligned}
$$

6. Let $f:\{1,2,3\} \rightarrow \mathbb{N}$ be the function $\{(1,4),(2,6),(3,12)\}$ and let $g: \mathbb{N} \rightarrow$ $\mathbb{R}$ be $g(x)=\frac{x}{2}$. Write the function $g \circ f:\{1,2,3\} \rightarrow \mathbb{R}$ as a set of ordered pairs.
$g \circ f(1)=g(f(1))=g(4)=2 . \quad g \circ f(2)=g(f(2))=g(6)=3$. $g \circ f(3)=g(f(3))=g(12)=6$. Therefore, $g \circ f=\{(1,2),(2,3),(3,6)\}$.

$$
g \circ f=\{(1,2),(2,3),(3,6)\}
$$

In problems 7 and 8 determine whether the given function is one-to-one or onto. Check all boxes which apply, and no other boxes. Give reasons for your answers.
7. $f: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $f(n)=2 n+3$.
$f$ is one-to-one because if $m \neq n$, then $2 m \neq 2 n$, so $2 m+$ $3 \neq 2 n+3$. $f$ is not onto because $f(m)$ is odd for all $m$ so, for example, $\nexists m$ such that $f(m)=6$.
$\checkmark$ One-to-one
$\square$ Onto
8. $f:[0, \infty) \rightarrow[1, \infty)$ given by $f(x)=x^{2}+1$.
$f$ is one-to-one because $f(x)=f(y) \Rightarrow x^{2}+1=y^{2}+1 \Rightarrow x^{2}=$ $y^{2} \Rightarrow x= \pm|y| \Rightarrow x=y$ because $x$ and $y$ are both non-negative. $f$ is onto because if $y \in[1, \infty)$, then $f(\sqrt{y-1})=y$.
$\checkmark$ One-to-one
$\checkmark$ Onto
9. Determine if the function $f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{6}$ given by $f(x)=2 x$ is a bijection. If $f$ is a bijection, find its inverse, and if it is not a bijection, explain why it is not.

```
Inverse or explanation
    f is not a bijection because f(\overline{0})=\overline{0}=f(\overline{3})
    even though }\overline{0}\not=\overline{3}\mathrm{ .
```

10. Prove that if $A$ is any set, then there is no surjection $f: A \rightarrow \mathcal{P}(A)$, that is, prove Cantor's Theorem. (Here $\mathcal{P}(A)$ is the power set of $A$.)

Proof:

Suppose that $f: A \rightarrow \mathcal{P}(A)$ were a surjection. Let $S=\{x \in$ $A: x \notin f(x)\}$. Since $f$ is onto, there is an $s \in A$ such that $f(s)=S$. Either $s \in S$ or $s \notin S$. If $s \in S$, then $s \notin f(s)=S$, a contradiction. If $s \notin S$, then $s \notin$ $f(s)$, so $s \in S$, again a contradiction. Therefore, the onto function $f$ cannot exist.
11. Use the definition of a countable set to prove that $\mathbb{N} \times\{0,1\}$ is countable. (In other words, find a bijection between the given set and $\mathbb{N}$.)

```
Answer:
Define f:\mathbb{N}\times{0,1}->\mathbb{N}\mathrm{ by }f(m,n)=2m-n. (Another way
of saying this is that f(m,0) is 2m and f(m,1) = 2m-1.)
Then f}\mathrm{ is onto because if }y\mathrm{ is even, }y=f(\frac{y}{2},0)\mathrm{ and if }y\mathrm{ is
odd, y = f(\frac{y+1}{2},1). f is one-to-one because if 2m-n=
2m' - n', then n= n' because if one of these were 0 and the
other were 1, then one of 2m-n and 2m' - n' would be even
and the other would be odd. Therefore, 2m=2m' so m=
m'. This means that (m,n)=( m},\mp@subsup{n}{}{\prime})
```

