MATH 214, Section 001
Spring, 2011
Exam 1

Name \qquad
Student ID number \qquad

1. On the axes below, carefully draw the direction field for the differential equation $\frac{d y}{d x}=(y-1)^{2}$.

Since $(y-1)^{2} \geq 0$, all segments will have non-negative slope. Since $(y-1)^{2}=0$ if and only if $y=1$, we draw horizontal segments only at points on the line $y=1$. On the horizontal line $y=c$, where c is a constant, the slope of each segment will be $(c-1)^{2}$, so as c gets close to 1 , the slope will get close to 0 .

2. For each of the following differential equations, determine the given equation is linear or nonlinear (check one box), and determine the order of the differential equation.
(a) $\left(\frac{d^{3} y}{d x^{3}}\right)^{2}+x \frac{d y}{d x}=x$

Linear

(Nonlinear

$$
\text { Order }=3
$$

(b) $\frac{d^{3} y}{d x^{3}}+x \frac{d y}{d x}+x y=3 x$
\square LinearNonlinear

$$
\text { Order }=3
$$

(c) $\frac{d^{3} y}{d x^{3}}+y \frac{d y}{d x}+x y=3 x$
\square Linear

- Nonlinear

$$
\text { Order }=3
$$

In problems 3 through 7 solve the given ordinary differential equation or initial value problem
3. $\frac{d y}{d x}=(y-1)^{2}, y(1)=\frac{3}{2}$.

This is an autonomous ODE. Dividing by the right side gives $(y-1)^{-2} \frac{d y}{d x}=1$. Integrating both sides of this equation with respect to x, and applying the Rule of Substitution gives $\int(y-$
$1)^{-2} \frac{d y}{d x} d x=\int 1 d x$, or $\int(y-1)^{-2} d y=\int 1 d x$. Therefore, $-(y-$ $1)^{-1}=x+C$, for a constant C. Solving gives $y=\left(\frac{-1}{x+C}\right)+1$. Since $y(1)=\frac{3}{2}$, we get $\frac{3}{2}=\left(\frac{-1}{1+C}\right)+1$, so $\frac{-1}{1+C}=\frac{1}{2}$. Solving this equation for C gives $C=-3$. Therefore, a solution is given by $y=\left(\frac{-1}{x-3}\right)+1 y=\left(\frac{1}{3-x}\right)+1=\frac{4-x}{3-x}$. (Note that this solution is valid for $x<3$.)

$$
\text { Answer: } \quad y=\frac{4-x}{3-x}
$$

4. $\frac{d y}{d x}+y=e^{-x}$

We multiply by the integrating factor $\mu(x)=e^{\int 1 d x}=e^{x}$ to get $e^{x} \frac{d y}{d x}+e^{x} y=e^{x} e^{-x}=1$. This equation can be written as

$$
\frac{d y e^{x}}{d x}=1
$$

Integrating both sides with respect to x gives $y e^{x}=x+C$, or

$$
y=x e^{-x}+C e^{-x}
$$

Answer: $\quad y=x e^{-x}+C e^{-x}$
5. $\frac{d x}{d t}+2 t x=6 t, x(0)=8$.

Multiplying by the integrating factor $\mu(t)=e^{\int 2 t d t}=e^{t^{2}}$ gives the equation

$$
\frac{d e^{t^{2}} x}{d t}=6 t e^{t^{2}}
$$

Integrating both sides with respect to t gives $e^{t^{2}} x=\int 6 t e^{t^{2}} d t=$ $3 e^{t^{2}}+C$, or $x(t)=3+C e^{-t^{2}}$. Therefore, $x(0)=3+C$, and since we are given the initial condition $x(0)=8, C+3=$ 8 , so $C=5$. This gives the solution $x(t)=3+5 e^{-t^{2}}$.

Answer:

$$
x(t)=3+5 e^{-t^{2}}
$$

6. $\frac{d y}{d x}=\frac{2 x e^{y}}{y}$

This equation is separable. It can be written as $y e^{-y} \frac{d y}{d x}=2 x$, or $y e^{-y} d y=2 x d x$. Integrating both sides of the equation gives $\int y e^{-y} d y=\int 2 x d x$. The left integral can be evaluated using integration by parts:

$$
\begin{array}{rlrl}
u & =y & v & =-e^{-y} \\
d u & =d y & d v & =e^{-y} d y
\end{array}
$$

Therefore, $\int y e^{-y} d y=\int u d v=u v-\int v d u=-y e^{-y}+\int e^{-y} d y=$ $-y e^{-y}-e^{-y}$. Since $\int 2 x d x=x^{2}-C$, we get the solution $-y e^{-y}-$ $e^{-y}=x^{2}-C$, or $y e^{-y}+e^{-y}=C-x^{2}$.

Answer:

$$
y e^{-y}+e^{-y}=C-x^{2}
$$

7. $\left(3 x^{2} y+\sin y\right) d x+\left(x^{3}+x \cos y-\sin y\right) d y=0$.
$\frac{\partial\left(3 x^{2} y+\sin y\right)}{\partial y}=3 x^{2}+\cos y$ and $\frac{\partial\left(x^{3}+x \cos y-\sin y\right)}{\partial x}=3 x^{2}+\cos y$. Therefore, the ODE is exact. We find a function $f(x, y)$ such that $f_{x}(x, y)=$ $3 x^{2} y+\sin y$ and $f_{y}(x, y)=x^{3}+x \cos y-\sin y$. Then $f(x, y)=\int\left(3 x^{2} y+\right.$ $\sin y) d x=x^{3} y+x \sin y+\phi(y)$. This gives $f_{y}(x, y)=x^{3}+x \cos y+$ $\phi^{\prime}(y)=x^{3}+x \cos y-\sin y$. Therefore, $\phi^{\prime}(y)=-\sin y$, so we can take $\phi(y)=\cos y$. Hence, one choice for $f(x, y)$ is $f(x, y)=$ $x^{3} y+x \sin y+\cos y$. This gives the solution $x^{3} y+x \sin y+\cos y=$ C.

Answer:

$$
x^{3} y+x \sin y+\cos y=C
$$

8. Find two solutions of the initial value problem $\frac{d y}{d x}=\left(\frac{3}{2}\right) \sqrt[3]{y}, y(1)=0$. (Note that a solution must be defined on an open interval containing $x=1$.)

One solution of the ODE is the constant $y=0$, which satisfies the initial condition. To find another solution, write the ODE as $\left(\frac{2}{3}\right) y^{-\frac{1}{3}} \frac{d y}{d x}=1$. Integrating gives $y^{\frac{2}{3}}=x+C$, or $y=$ $\pm(\sqrt{x+C})^{3}$. Since $y(1)=0, \sqrt{1+C}=0$, so $C=-1$. Therefore, $y= \pm(\sqrt{x-1})^{3}$. However, these functions are not defined on an open interval containing $x=1$. To get a second solution, we let $y= \begin{cases}0 & \text { If } x \leq 0 . \\ (\sqrt{x-1})^{3} & \text { If } x>0 .\end{cases}$
(We could let $y=\left\{\begin{array}{ll}0 & \text { If } x \leq 1 . \\ -(\sqrt{x-1})^{3} & \text { If } x>1 .\end{array}\right.$)
Answer:

$$
y=0 \text { and } y= \begin{cases}0 & \text { If } x \leq 1 \\ (\sqrt{x-1})^{3} & \text { If } x>1\end{cases}
$$

