MATH 214, Section 001
Spring, 2011
Exam 4

Name \qquad
Student ID number \qquad
The following table might be helpful for some of the problems below.

		Some Laplace Transforms
	$f(t)$	$\mathcal{L}(f(t))(s)$
1.	1	$\frac{1}{s}$
2.	t	$\frac{1}{s^{2}}$
3.	$e^{a t}$	$\frac{1}{s-a}$
4.	$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}$
5.	$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}$
6.	$f^{(n)}(t)$	$s^{n} \mathcal{L}(f(t))(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\cdots-f^{(n-1)}(0)$
7.	$u_{c}(t) f(t-c)$	$e^{-c s} \mathcal{L}(f(t))(s)$
8.	$e^{c t} f(t)$	$\mathcal{L}(f(t))(s-c)$

1. Write the function $f(t)=\left\{\begin{array}{ll}3 & \text { If } t<2 \\ t^{2}-1 & \text { If } 2 \leq t<3 \\ 8 & \text { If } 3 \leq t\end{array}\right.$ as a sum of functions of the form $h(t) u_{c}(t)$, where $u_{c}(t)= \begin{cases}0 & \text { If } t<c . \\ 1 & \text { If } t \geq c .\end{cases}$

Since the characteristic function $\chi_{[c, d)}(t)= \begin{cases}0 & \text { If } t<c, \\ 1 & \text { If } c \leq t<d, \\ 0 & \text { If } d \leq t,\end{cases}$ of the interval $[c, d)$ can be written as $\chi_{[c, d)}(t)=u_{c}(t)-u_{d}(t)$, $f(t)=3\left(u_{0}(t)-u_{2}(t)\right)+\left(t^{2}-1\right)\left(u_{2}(t)-u_{3}(t)\right)+8 u_{3}(t)=3 u_{0}(t)+$ $\left(t^{2}+4\right) u_{2}(t)+\left(9-t^{2}\right) u_{3}(t)$. [Note: If you are thinking of f as being defined for negative values of t as well as positive, you can add $3\left(1-u_{0}(t)\right)$ to the solution above.]

$$
\begin{aligned}
& \text { Answer: } \\
& \quad f(t)=3 u_{0}(t)+\left(t^{2}+4\right) u_{2}(t)+\left(9-t^{2}\right) u_{3}(t)
\end{aligned}
$$

2. Let $h(t)=\left\{\begin{array}{ll}0 & \text { If } t<2 \pi . \\ \sin t & \text { If } t \geq 2 \pi .\end{array}\right.$ Find the Laplace transform $\mathcal{L}(x(t))(s)$ of a solution of the initial value problem $\frac{d x}{d t}-2 x=h(t), x(0)=5$.
$h(t)=u_{2 \pi}(t) \sin t$. Since $\sin t=\sin (t-2 \pi), \quad h(t)=u_{2 \pi(t)} \sin (t-$ $2 \pi)$. Therefore, $\mathcal{L}(h(t))=e^{-2 \pi s} \mathcal{L}(\sin t)(s)=\frac{e^{-2 \pi s}}{s^{2}+1}$. Taking Laplace transforms of both sides of the equation gives $s \mathcal{L}(x(t))(s)-$ $x(0)-2 \mathcal{L}(x(t))(s)=\frac{e^{-2 \pi s}}{s^{2}+1}$, or $s \mathcal{L}(x(t))(s)-5-2 \mathcal{L}(x(t))(s)=\frac{e^{-2 \pi s}}{s^{2}+1}$. Solving gives $\mathcal{L}(x(t))(s)=\frac{5}{s-2}+\frac{e^{-2 \pi s}}{(s-2)\left(s^{2}+1\right)}$.

$$
\mathcal{L}(x(t))(s)=\frac{5}{s-2}+\frac{e^{-2 \pi s}}{(s-2)\left(s^{2}+1\right)}
$$

3. Find the inverse Laplace transform of the function $F(s)=\frac{s}{s^{2}-6 s+34}$.

Completing the square in the denominator gives $F(s)=\frac{s}{(s-3)^{2}+25}=$ $\frac{s-3}{(s-3)^{2}+25}+\left(\frac{3}{5}\right) \frac{5}{(s-3)^{2}+25}$. Since $\mathcal{L}^{-1}\left(\frac{s}{s^{2}+25}\right)(t)=\cos (5 t)$, and $\mathcal{L}^{-1}\left(\frac{5}{s^{2}+25}\right)(t)=$ $\sin (5 t)$, the last line of the table gives $\mathcal{L}^{-1}(F(s))(t)=e^{3 t}(\cos (5 t)+$ $\left.\left(\frac{3}{5}\right) \sin (5 t)\right)$.

$$
\mathcal{L}^{-1}(F(s))(t)=e^{3 t}\left(\cos (5 t)+\left(\frac{3}{5}\right) \sin (5 t)\right)
$$

4. Solve the initial value problem $\frac{d x}{d t}-x=\left\{\begin{array}{ll}0 & \text { If } t<\pi, \\ \sin t & \text { If } t \geq \pi,\end{array}, x(0)=0\right.$. [Hint: It might help to know that the partial fraction expansion for $\frac{2}{(s-1)\left(s^{2}+1\right)}$ is $\frac{1}{s-1}-\frac{s+1}{s^{2}+1}$.]

Taking Laplace transforms of both sides of the ODE and using the initial condition gives $s \mathcal{L}(x)(s)-0-\mathcal{L}(x)(s)=-e^{-\pi s} \mathcal{L}(\sin (t-$ $\pi)(s)=-\frac{e^{-\pi s}}{s^{2}+1}$, so $\mathcal{L}(x)(s)=\frac{-e^{-\pi s}}{(s-1)\left(s^{2}+1\right)}$. Therefore, from the hint

$$
\mathcal{L}(x)(s)=-\left(\frac{1}{2}\right)\left(\frac{e^{-\pi s}}{s-1}-\frac{s e^{-\pi s}}{s^{2}+1}-\frac{e^{-\pi s}}{s^{2}+1}\right)
$$

Therefore,
$x(t)=-\left(\frac{1}{2}\right)\left(u_{\pi}(t)\right)\left(e^{t-\pi}-\cos (t-\pi)-\sin (t-\pi)\right)=-\left(\frac{1}{2}\right)\left(u_{\pi}(t)\right)\left(e^{t-\pi}+\cos t+\sin t\right)$.

$$
x(t)=\quad-\left(\frac{1}{2}\right)\left(u_{\pi}(t)\right)\left(e^{t-\pi}+\cos t+\sin t\right)
$$

5. Use the fact that $\left(\begin{array}{ccc}-1 & 1 & 0 \\ 0 & 1 & 1 \\ 2 & 2 & 2\end{array}\right)^{-1}=\left(\begin{array}{ccc}0 & -1 & \frac{1}{2} \\ 1 & -1 & \frac{1}{2} \\ -1 & 2 & -\frac{1}{2}\end{array}\right)$ to solve the system of equations $\left\{\begin{array}{clr}-x+y & =4 \\ y+z & = & -2 \\ 2 x+2 y+2 z & = & 8\end{array}\right.$

The system can be written as $A\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}4 \\ -2 \\ 8\end{array}\right)$, where $A=$ $\left(\begin{array}{ccc}-1 & 1 & 0 \\ 0 & 1 & 1 \\ 2 & 2 & 2\end{array}\right)$. Therefore, $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=A^{-1}\left(\begin{array}{c}4 \\ -2 \\ 8\end{array}\right)=\left(\begin{array}{ccc}0 & -1 & \frac{1}{2} \\ 1 & -1 & \frac{1}{2} \\ -1 & 2 & -\frac{1}{2}\end{array}\right)\left(\begin{array}{c}4 \\ -2 \\ 8\end{array}\right)=$
$\left(\begin{array}{c}6 \\ 10 \\ -12\end{array}\right)$, so $x=6, y=10, z=-12$.

$$
\begin{aligned}
& x=6 \\
& y=10 \\
& z=-12
\end{aligned}
$$

6. Find all eigenvalues of the matrix $A=\left(\begin{array}{cc}7 & -4 \\ 8 & -5\end{array}\right)$

The eigenvalues are the roots of the polynomial $p(\lambda)=\operatorname{det}(A-$ $\lambda I)=\operatorname{det}\left(\begin{array}{cc}7-\lambda & -4 \\ 8 & -5-\lambda\end{array}\right)=\lambda^{2}-2 \lambda-3=(\lambda-3)(\lambda+1)$. Therefore, the eigenvalues are $\lambda=-1$ and $\lambda=3$.

> Answer:

$$
\lambda=-1 \text { and } \lambda=3
$$

7. Let $A=\left(\begin{array}{cc}-1 & -6 \\ 2 & 6\end{array}\right)$. Then eigenvalues for A are $\lambda=2$ and $\lambda=3$ with corresponding eigenvectors $\binom{2}{-1}$ and $\binom{-3}{2}$, respectively. Find $\exp (A)$.

If P is the matrix whose columns are the given eigenvectors, that is, $P=\left(\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right)$, then $P^{-1} A P$ is the diagonal matrix

$$
\begin{aligned}
& D=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right) . \quad \text { Therefore, } A=P D P^{-1} \text { so } \exp (A)=\exp \left(P D P^{-1}\right)= \\
& P(\exp (D)) P^{-1}=\left(\begin{array}{cc}
2 & -3 \\
-1 & 2
\end{array}\right)\left(\begin{array}{cc}
e^{2} & 0 \\
0 & e^{3}
\end{array}\right)\left(\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right)=\left(\begin{array}{cc}
4 e^{2}-3 e^{3} & 6 e^{2}-6 e^{3} \\
-2 e^{2}+2 e^{3} & -3 e^{2}+4 e^{3}
\end{array}\right) .
\end{aligned}
$$

$$
\exp (A)=\left(\begin{array}{cc}
4 e^{2}-3 e^{3} & 6 e^{2}-6 e^{3} \\
-2 e^{2}+2 e^{3} & -3 e^{2}+4 e^{3}
\end{array}\right)
$$

