MATH 214, Section 001
Spring, 2011
Exam 3

Name \qquad
Student ID number \qquad
The following information might be helpful for some of the problems below.

- $x^{3}-7 x^{2}+16 x-10=(x-1)\left(x^{2}-6 x+10\right)$
- $(x-a)^{4}=x^{4}-4 x^{3} a+6 x^{2} a^{2}-4 x a^{3}+a^{4}$

		Some Laplace Transforms
	$f(t)$	$\mathcal{L}(f(t))(s)$
1.	1	$\frac{1}{s}$
2.	t	$\frac{1}{s^{2}}$
3.	$e^{a t}$	$\frac{1}{s-a}$
4.	$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}$
5.	$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}$
6.	$\cos t+\frac{t^{2}}{2}-1$	$\frac{1}{s^{3}\left(s^{2}+1\right)}$
7	$f^{(n)}(t)$	$s^{n} \mathcal{L}(f(t))(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\cdots-f^{(n-1)}(0)$

1. Find the general solution of the ODE $\frac{d^{3} y}{d x^{3}}-7 \frac{d^{2} y}{d x^{2}}+16 \frac{d y}{d x}-10 y=0$.

The characteristic polynomial is $p(r)=r^{3}-7 r^{2}+16 r-10=(r-$ 1) $\left(r^{2}-6 r+10\right)$. From the quadratic formula, we get that the roots of $r^{2}-6 r+10$ are $r=3 \pm i$. Therefore, the roots of $p(r)$ are 1 and $3 \pm i$, so the general solution of the ODE is $y=$ $C_{1} e^{x}+C_{2} e^{3 x} \cos x+C_{3} e^{3 x} \sin x$.

$$
\begin{aligned}
& \text { Answer: } \\
& \qquad y=C_{1} e^{x}+C_{2} e^{3 x} \cos x+C_{3} e^{3 x} \sin x
\end{aligned}
$$

2. Find the general solution of the $\operatorname{ODE} \frac{d^{4} y}{d x^{4}}-12 \frac{d^{3} y}{d x^{3}}+54 \frac{d^{2} y}{d x^{2}}-108 \frac{d y}{d x}+81 y=$ 0 .

The characteristic polynomial is $p(r)=r^{4}-12 r^{3}+54 r^{2}-108 r+$ $81=(r-3)^{4}$. Therefore, $r=3$ is a root of multiplicity 4 , so the general solution of the ODE is $y=\left(C_{1}+C_{2} x+C_{3} x^{2}+\right.$ $\left.C_{4} x^{3}\right) e^{3 x}$.

$$
\begin{aligned}
& \text { Answer: } \\
& \quad y=\left(C_{1}+C_{2} x+C_{3} x^{2}+C_{4} x^{3}\right) e^{3 x}
\end{aligned}
$$

3. The general solution of the homogeneous ODE $\frac{d^{3} y}{d x^{3}}-6 \frac{d^{2} y}{d x^{2}}+11 \frac{d y}{d x}-6 y=0$ is $y=C_{1} e^{x}+C_{2} e^{2 x}+C_{3} e^{3 x}$. Find the general solution of the nonhomogeneous ODE $\frac{d^{3} y}{d x^{3}}-6 \frac{d^{2} y}{d x^{2}}+11 \frac{d y}{d x}-6 y=24 x$.

We look for a particular solution of the form $y=A x+B$. Then

$$
y^{\prime}=A,
$$

and

$$
y^{\prime \prime}=y^{(3)}=0 .
$$

Substituting in the non-homogeneous ODE gives

$$
0-6(0)+11 A-6(A x+B)=24 x
$$

or

$$
-6 A x+(11 A-6 B)=24 x
$$

Comparing coefficients gives $-6 A=24$ and $11 A-6 B=0$. Therefore, $A=-4$ and $B=\frac{-22}{3}$. Therefore, a particular solution is $y=-4 x-\frac{22}{3}$, so the general solution is $y=C_{1} e^{x}+C_{2} e^{2 x}+$ $C_{3} e^{3 x}-4 x-\frac{22}{3}$.

Answer:

$$
y=C_{1} e^{x}+C_{2} e^{2 x}+C_{3} e^{3 x}-4 x-\frac{22}{3}
$$

4. The general solution of the homogeneous ODE $\frac{d^{3} y}{d x^{3}}-6 \frac{d^{2} y}{d x^{2}}+11 \frac{d y}{d x}-6 y=0$ is $y=C_{1} e^{x}+C_{2} e^{2 x}+C_{3} e^{3 x}$. Find the general solution of the nonhomogeneous ODE $\frac{d^{3} y}{d x^{3}}-6 \frac{d^{2} y}{d x^{2}}+11 \frac{d y}{d x}-6 y=e^{x}$.

Since $y=e^{x}$ is a solution of the homogeneous equation, we look for a particular solution of the form $y=A x e^{e}$. Then $y^{\prime}=A e^{x}+A x e^{x}, y^{\prime \prime}=2 A e^{x}+A x e^{x}$, and $y^{(3)}=3 A e^{x}+A x e^{x}$. Substituting into the equation gives

$$
\left(3 A e^{x}+A x e^{x}\right)-6\left(2 A e^{x}+A x e^{x}\right)+11\left(A e^{x}+A x e^{x}\right)-6 A x e^{x}=e^{x}
$$

or

$$
2 A e^{x}=e^{x}
$$

Therefore, $2 A=1$, so $A=\frac{1}{2}$. This gives the particular solution $y=\frac{x e^{x}}{2}$, so the general solution is $y=C_{1} e^{x}+C_{2} e^{2 x}+C_{3} e^{3 x}+$ $\frac{x e^{x}}{2}$.

$$
\begin{aligned}
& \text { Answer: } \\
& C_{1} e^{x}+C_{2} e^{2 x}+C_{3} e^{3 x}+\frac{x e^{x}}{2}
\end{aligned}
$$

5. Find the Laplace transform $\mathcal{L}\left(t^{2}\right)$ of the function $f(t)=t^{2}$.

By definition, $\mathcal{L}\left(t^{2}\right)(s)=\int_{0}^{\infty} t^{2} e^{-s t} d t$. We first use integration by parts to rewrite $\int t^{2} e^{-s t} d t$. We let

$$
\begin{array}{cl}
u=t^{2} & v=-\frac{e^{-s t}}{s}, \\
d u=2 t d t & d v=e^{-s t},
\end{array}
$$

we get $\int t^{2} e^{-s t} d t=-\frac{t^{2} e^{-s t}}{s}+\int \frac{2 t e^{-s t}}{s} d t$. Therefore, $\mathcal{L}\left(t^{2}\right)(s)=\int_{0}^{\infty} t^{2} e^{-s t} d t=$ $\lim _{u \rightarrow \infty}\left(-\left.\frac{t^{2} e^{-s t}}{s}\right|_{0} ^{u}\right)+\int_{0}^{\infty} \frac{2 t e^{-s t}}{s} d t=\left(\frac{2}{s}\right) \int_{0}^{\infty} t e^{-s t} d t=\left(\frac{2}{s}\right) \mathcal{L}(t)=\left(\frac{2}{s}\right)\left(\frac{1}{s^{2}}\right)=$ $\frac{2}{s^{3}}$.
[An alternative argument is this: Let $f(t)=t^{2}$. Then $\mathcal{L}\left(f^{\prime}(t)\right)(s)=$ $s \mathcal{L}(f(t))(s)-f^{\prime}(0)$, that is, $\mathcal{L}(2 t)(s)=s \mathcal{L}\left(t^{2}\right)(s)-f(0)$. Since $\mathcal{L}(2 t)(s)=2 \mathcal{L}(t)(s)=2\left(\frac{1}{s^{2}}\right)=\frac{2}{s^{2}}$ and $f(0)=0, \frac{2}{s^{2}}=s \mathcal{L}\left(t^{2}\right)(s)$, so $\left.\mathcal{L}\left(t^{2}\right)(s)=\frac{2}{s^{3}}.\right]$

$$
\begin{aligned}
& \text { Answer: } \\
& \quad \mathcal{L}\left(t^{2}\right)(s)=\frac{2}{s^{3}}
\end{aligned}
$$

6. Suppose that $f(t)$ is a function such that $\frac{d^{4} f}{d t^{4}}=7 f(t), f^{(3)}(0)=0$, $f^{\prime \prime}(0)=0, f^{\prime}(0)=0$, and $f(0)=9$. Find $\mathcal{L}(f(t))(s)$.
$\mathcal{L}\left(f^{(4)}(t)\right)(s)=s^{4} \mathcal{L}(f(t))(s)-s^{3} f(0)-s^{2} f^{\prime}(0)-s f^{\prime \prime}(0)-f^{(3)}(0)$. From the initial conditions, we get $\mathcal{L}\left(f^{(4)}(t)\right)(s)=s^{4} \mathcal{L}(f(t))(s)-9 s^{3}$. Since $f^{(4)}(t)=7 f(t), \quad \mathcal{L}\left(f^{(4)}(t)\right)(s)=7 \mathcal{L}(f(t))(s)$, so $7 \mathcal{L}(f(t))(s)=$ $s^{4} \mathcal{L}(f(t))(s)-9 s^{3}$. Therefore, $\left(s^{4}-7\right) \mathcal{L}(f(t))(s)=9 s^{3}$, so $\mathcal{L}(f(t))(s)=$ $\frac{9 s^{3}}{s^{4}-7}$.

$$
\begin{aligned}
& \text { Answer: } \\
& \quad \mathcal{L}(f(t))(s)=\frac{9 s^{3}}{s^{4}-7}
\end{aligned}
$$

7. Suppose that $h(t)$ is a function such that $\mathcal{L}(h(t))(s)=\frac{1}{s^{3}}$. Solve the initial value problem $\frac{d^{2} x}{d t^{2}}+x=h(t), x(0)=2, x^{\prime}(0)=1$.

Taking Laplace transforms of both sides of the differential equation gives $\mathcal{L}\left(\frac{d^{2} x}{d t^{2}}\right)(s)+\mathcal{L}(x(t))(s)=\mathcal{L}\left(h(t)(s) . \quad \mathcal{L}\left(\frac{d^{2} x}{d t^{2}}\right)(s)=\right.$ $s^{2} \mathcal{L}(x(t))(s)-s x(0)-x^{\prime}(0)=\mathcal{L}(x(t))(s)-2 s-1$. Therefore, $s^{2} \mathcal{L}(x(t))(s)-$ $2 s-1+\mathcal{L}(x(t))(s)=\mathcal{L}(h(t))(s)=\frac{1}{s^{3}}$. Solving for $\mathcal{L}(x(t))(s)$ gives

$$
\mathcal{L}(x(t))(s)=\frac{\frac{1}{s^{3}}+2 s+1}{s^{2}+1}=\frac{1}{s^{3}\left(s^{2}+1\right)}+2\left(\frac{s}{s^{2}+1}\right)+\frac{1}{s^{2}+1} .
$$

From the table, we get

$$
x(t)=\cos t+\frac{t^{2}}{2}-1+2 \cos t+\sin t=3 \cos t+\sin t+\frac{t^{2}}{2}-1 .
$$

$$
\begin{aligned}
& \text { Answer: } \\
& \quad x(t)=3 \cos t+\sin t+\frac{t^{2}}{2}-1
\end{aligned}
$$

