MATH 214, Section 001	Name	Solutions
Spring, 2011		
Exam 3	Student ID number	

The following information might be helpful for some of the problems below.

• $x^3 - 7x^2 + 16x - 10 = (x - 1)(x^2 - 6x + 10)$

•
$$(x-a)^4 = x^4 - 4x^3a + 6x^2a^2 - 4xa^3 + a^4$$

•

Some Laplace Transforms			
	f(t)	$\mathcal{L}(f(t))(s)$	
1.	1	$\frac{1}{s}$	
2.	t	$\frac{1}{s^2}$	
3.	e^{at}	$\frac{1}{s-a}$	
4.	$\sin(at)$	$\frac{a}{s^2+a^2}$	
5.	$\cos(at)$	$\frac{s}{s^2+a^2}$	
6.	$\cos t + \frac{t^2}{2} - 1$	$\frac{1}{s^3(s^2+1)}$	
7	$f^{(n)}(t)$	$s^{n}\mathcal{L}(f(t))(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{(n-1)}(0)$	

1. Find the general solution of the ODE $\frac{d^3y}{dx^3} - 7\frac{d^2y}{dx^2} + 16\frac{dy}{dx} - 10y = 0.$

The characteristic polynomial is $p(r) = r^3 - 7r^2 + 16r - 10 = (r - 1)(r^2 - 6r + 10)$. From the quadratic formula, we get that the roots of $r^2 - 6r + 10$ are $r = 3 \pm i$. Therefore, the roots of p(r) are 1 and $3\pm i$, so the general solution of the ODE is $y = C_1 e^x + C_2 e^{3x} \cos x + C_3 e^{3x} \sin x$.

Answer:

$$y = C_1 e^x + C_2 e^{3x} \cos x + C_3 e^{3x} \sin x$$

2. Find the general solution of the ODE $\frac{d^4y}{dx^4} - 12\frac{d^3y}{dx^3} + 54\frac{d^2y}{dx^2} - 108\frac{dy}{dx} + 81y = 0.$

The characteristic polynomial is $p(r) = r^4 - 12r^3 + 54r^2 - 108r + 81 = (r-3)^4$. Therefore, r=3 is a root of multiplicity 4, so the general solution of the ODE is $y = (C_1 + C_2x + C_3x^2 + C_4x^3)e^{3x}$.

Answer:

$$y = (C_1 + C_2 x + C_3 x^2 + C_4 x^3) e^{3x}$$

3. The general solution of the homogeneous ODE $\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 0$ is $y = C_1 e^x + C_2 e^{2x} + C_3 e^{3x}$. Find the general solution of the non-homogeneous ODE $\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 24x$.

We look for a particular solution of the form y = Ax + B. Then

$$y' = A,$$

and

$$y'' = y^{(3)} = 0.$$

Substituting in the non-homogeneous ODE gives

$$0 - 6(0) + 11A - 6(Ax + B) = 24x,$$

or

$$-6Ax + (11A - 6B) = 24x.$$

Comparing coefficients gives -6A = 24 and 11A - 6B = 0. Therefore, A = -4 and $B = \frac{-22}{3}$. Therefore, a particular solution is $y = -4x - \frac{22}{3}$, so the general solution is $y = C_1 e^x + C_2 e^{2x} + C_3 e^{3x} - 4x - \frac{22}{3}$.

Answer:

$$y = C_1 e^x + C_2 e^{2x} + C_3 e^{3x} - 4x - \frac{22}{3}$$

4. The general solution of the homogeneous ODE $\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 0$ is $y = C_1 e^x + C_2 e^{2x} + C_3 e^{3x}$. Find the general solution of the non-homogeneous ODE $\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = e^x$.

Since $y = e^x$ is a solution of the homogeneous equation, we look for a particular solution of the form $y = Axe^{e}$. Then $y' = Ae^x + Axe^x$, $y'' = 2Ae^x + Axe^x$, and $y^{(3)} = 3Ae^x + Axe^x$. Substituting into the equation gives

$$(3Ae^{x} + Axe^{x}) - 6(2Ae^{x} + Axe^{x}) + 11(Ae^{x} + Axe^{x}) - 6Axe^{x} = e^{x},$$

or

$$2Ae^x = e^x$$

Therefore, 2A = 1, so $A = \frac{1}{2}$. This gives the particular solution $y = \frac{xe^x}{2}$, so the general solution is $y = C_1e^x + C_2e^{2x} + C_3e^{3x} + \frac{xe^x}{2}$.

Answer:

$$C_1 e^x + C_2 e^{2x} + C_3 e^{3x} + \frac{xe^x}{2}$$

5. Find the Laplace transform $\mathcal{L}(t^2)$ of the function $f(t) = t^2$.

By definition, $\mathcal{L}(t^2)(s) = \int_0^\infty t^2 e^{-st} dt$. We first use integration by parts to rewrite $\int t^2 e^{-st} dt$. We let

$$\begin{array}{ll} u=t^2 & v=-\frac{e^{-st}}{s},\\ du=2tdt & dv=e^{-st}, \end{array}$$

we get $\int t^2 e^{-st} dt = -\frac{t^2 e^{-st}}{s} + \int \frac{2t e^{-st}}{s} dt$. Therefore, $\mathcal{L}(t^2)(s) = \int_0^\infty t^2 e^{-st} dt = \lim_{u \to \infty} (-\frac{t^2 e^{-st}}{s} |_0^u) + \int_0^\infty \frac{2t e^{-st}}{s} dt = (\frac{2}{s}) \int_0^\infty t e^{-st} dt = (\frac{2}{s}) \mathcal{L}(t) = (\frac{2}{s})(\frac{1}{s^2}) = \frac{2}{s^3}$.

[An alternative argument is this: Let $f(t)=t^2$. Then $\mathcal{L}(f'(t))(s)=s\mathcal{L}(f(t))(s)-f'(0)$, that is, $\mathcal{L}(2t)(s)=s\mathcal{L}(t^2)(s)-f(0)$. Since $\mathcal{L}(2t)(s)=2\mathcal{L}(t)(s)=2(\frac{1}{s^2})=\frac{2}{s^2}$ and f(0)=0, $\frac{2}{s^2}=s\mathcal{L}(t^2)(s)$, so $\mathcal{L}(t^2)(s)=\frac{2}{s^3}$.]

Answer:

$$\mathcal{L}(t^2)(s) = \frac{2}{s^3}$$

6. Suppose that f(t) is a function such that $\frac{d^4f}{dt^4} = 7f(t)$, $f^{(3)}(0) = 0$, f''(0) = 0, and f(0) = 9. Find $\mathcal{L}(f(t))(s)$.

$$\begin{split} \mathcal{L}(f^{(4)}(t))(s) &= s^4 \mathcal{L}(f(t))(s) - s^3 f(0) - s^2 f'(0) - s f''(0) - f^{(3)}(0) \,. \quad \text{From} \\ \text{the initial conditions, we get } \mathcal{L}(f^{(4)}(t))(s) &= s^4 \mathcal{L}(f(t))(s) - 9s^3 \,. \\ \text{Since } f^{(4)}(t) &= 7f(t) \,, \ \mathcal{L}(f^{(4)}(t))(s) = 7\mathcal{L}(f(t))(s) \,, \text{ so } 7\mathcal{L}(f(t))(s) = s^4 \mathcal{L}(f(t))(s) - 9s^3 \,. \\ \text{Therefore, } (s^4 - 7)\mathcal{L}(f(t))(s) = 9s^3 \,, \text{ so } \mathcal{L}(f(t))(s) = \frac{9s^3}{s^4 - 7} \,. \end{split}$$

Answer:
$$\mathcal{L}(f(t))(s) = \frac{9s^3}{s^4-7}$$

7. Suppose that h(t) is a function such that $\mathcal{L}(h(t))(s) = \frac{1}{s^3}$. Solve the initial value problem $\frac{d^2x}{dt^2} + x = h(t), x(0) = 2, x'(0) = 1$.

Taking Laplace transforms of both sides of the differential equation gives $\mathcal{L}(\frac{d^2x}{dt^2})(s) + \mathcal{L}(x(t))(s) = \mathcal{L}(h(t)(s)$. $\mathcal{L}(\frac{d^2x}{dt^2})(s) = s^2\mathcal{L}(x(t))(s) - sx(0) - x'(0) = \mathcal{L}(x(t))(s) - 2s - 1$. Therefore, $s^2\mathcal{L}(x(t))(s) - 2s - 1 + \mathcal{L}(x(t))(s) = \mathcal{L}(h(t))(s) = \frac{1}{s^3}$. Solving for $\mathcal{L}(x(t))(s)$ gives

$$\mathcal{L}(x(t))(s) = \frac{\frac{1}{s^3} + 2s + 1}{s^2 + 1} = \frac{1}{s^3(s^2 + 1)} + 2(\frac{s}{s^2 + 1}) + \frac{1}{s^2 + 1}.$$

From the table, we get

$$x(t) = \cos t + \frac{t^2}{2} - 1 + 2\cos t + \sin t = 3\cos t + \sin t + \frac{t^2}{2} - 1.$$

Answer:
$$x(t) = 3\cos t + \sin t + \frac{t^2}{2} - 1$$