MATH 214, Section 001
Spring, 2011
Exam 2

Name \qquad
Student ID number \qquad

1. Use Euler's method with step size $h=.1$ to estimate the value of $\phi(1.2)$ where $y=\phi(x)$ is a solution of the initial value problem $\frac{d y}{d x}=y^{2}-x^{2}$, $y(1)=2$.

According to Euler's Method, to approximate a solution of $\frac{d y}{d x}=$ $f(x, y) . \quad y\left(x_{0}\right)=y_{0}$, we take $x_{n+1}=x_{n}+h$ and $y_{n+1}=y_{n}+$ $f\left(x_{n}, y_{n}\right) h$, where h is the step size. In this case, $h=.1$. Since $1.2=1+2 h$, we want to find y_{2}. Applying the formula, we get $x_{1}=1.1$ and $y_{1}=y_{0}+f\left(x_{0}, y_{0}\right) h=2+\left(2^{2}-1^{2}\right)(.1)=2.3$. Therefore, $y_{2}=y_{1}+f\left(x_{1}, y_{1}\right) h=2.3+\left(2.3^{2}-1.1^{2}\right)(.1)=2.3+.408=$ 2.708 .

$$
\phi(1.2) \approx 2.708
$$

In problems 2 through 6 solve the given differential equation or initial value problem
2. $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-6 y=0$

The characteristic equation for the differential equation is $r^{2}+r-6=0$, which can be written as $(r+3)(r-2)=0$. Therefore, the roots of the characteristic polynomial are $r=$ -3 and $r=2$. This gives the general solution $y=C_{1} e^{-3 x}+C_{2} e^{2 x}$.

$$
\text { Answer: } y=C_{1} e^{-3 x}+C_{2} e^{2 x}
$$

3. $\frac{d^{2} x}{d t^{2}}-10 \frac{d x}{d t}+29 x=0$

The characteristic polynomial is $r^{2}-10 r+29$. By the quadratic formula, the roots of this polynomial are given by

$$
r=\frac{10 \pm \sqrt{100-116}}{2}=5 \pm 2 i .
$$

Since the polynomial has complex roots, the solution is $x=$ $e^{5 t}\left(C_{1} \cos (2 t)+C_{2} \sin (2 t)\right)$.

$$
\text { Answer: } x=e^{5 t}\left(C_{1} \cos (2 t)+C_{2} \sin (2 t)\right)
$$

4. $\frac{d^{2} y}{d x^{2}}+9 y=0, y(\pi)=4, y^{\prime}(\pi)=3$.

The characteristic polynomial is $r^{2}+9$, which has roots $\pm 3 i$. Therefore, the general solution of the ODE is

$$
y=C_{1} \cos (3 x)+C_{2} \sin (3 x)
$$

Therefore,

$$
y^{\prime}=-3 C_{1} \sin (3 x)+3 C_{2} \cos (3 x)
$$

Since $y(\pi)=4, C_{1} \cos (3 \pi)+C_{2} \sin (3 \pi)=4$, that is, $-C_{1}=4$, so $C_{1}=-4$. Since $y^{\prime}(\pi)=3,-3 C_{1} \sin (3 \pi)+3 C_{2} \cos (3 \pi)=0$, that is, $-3 C_{2}=3$, so $C_{2}=-1$. Therefore, the solution is $y=-4 \cos (3 x)-\sin (3 x)$.

$$
\text { Answer: } y=-4 \cos (3 x)-\sin (3 x)
$$

5. $\frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+9 y=0, y(0)=2, y^{\prime}(0)=1$.

The characteristic polynomial is $r^{2}+6 r+9=(r+3)^{2}$. The only root of this polynomial is $r=-3$. Therefore, the general solution of the ODE is

$$
y=C_{1} e^{-3 t}+C_{2} t e^{-3 t} .
$$

The derivative is given by

$$
y^{\prime}=-3 C_{1} e^{-3 t}+C_{2} e^{-3 t}-3 C_{2} t e^{-3 t} .
$$

Since $y(0)=2, C_{1}=2$. Since $y^{\prime}(0)=1,-3 C_{1}+C_{2}=1$; we know that $C_{1}=2$, so $C_{2}=7$. Therefore, the solution is $y=2 e^{-3 t}+7 t e^{-3 t}$.

$$
\text { Answer: } y=2 e^{-3 t}+7 t e^{-3 t}
$$

6. $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-6 y=52 \cos (2 x)$ (You may want to use an earlier problem.)

From problem 2 the general solution of the homogeneous ODE $\frac{d^{2} y}{d x^{2}}+$ $\frac{d y}{d x}-6 y=0$ is $y=C_{1} e^{-3 x}+C_{2} e^{2 x}$. We look for a particular solution of the given ODE of the form

$$
y=A \cos (2 x)+B \sin (2 x)
$$

Then

$$
y^{\prime}=-2 A \sin (2 x)+2 B \cos (2 x),
$$

and

$$
y^{\prime \prime}=-4 A \cos (2 x)-4 B \sin (2 x)
$$

We want y to be a solution of the given ODE, so we want $(-4 A \cos (2 x)-$ $4 B \sin (2 x))+(-2 A \sin (2 x)+2 B \cos (2 x))-6(A \cos (2 x)+B \sin (2 x))=$ $52 \cos (2 x)$. Simplifying gives

$$
(-10 A+2 B) \cos (2 x)+(-2 A-10 B) \sin (2 x)=52 \cos (2 x)
$$

Comparing coefficients gives

$$
\begin{aligned}
-10 A+2 B & =52 \\
-2 A-10 B & =0
\end{aligned}
$$

Solving this system gives $A=-5, B=1$. Therefore, a particular solution is given by $y=-5 \cos (2 x)+\sin (2 x)$, so the general solution is

$$
y=C_{1} e^{-3 x}+C_{2} e^{2 x}-5 \cos (2 x)+\sin (2 x) .
$$

Answer:

$$
y=C_{1} e^{-3 x}+C_{2} e^{2 x}-5 \cos (2 x)+\sin (2 x)
$$

7. The function $y_{1}=f(t)=t^{5}$ is a solution of the ODE $\frac{d^{2} y}{d t^{2}}-\left(\frac{3}{t}\right) \frac{d y}{d t}-$ $\left(\frac{5}{t^{2}}\right) y=0$ for $t>0$. Use the method of reduction of order to find another solution y_{2} of the ODE which, along with y_{1}, gives a fundamental set of solutions.

We look for a solution of the form

$$
y_{2}=t^{5} h(t) .
$$

Then

$$
y^{\prime}=t^{5} h^{\prime}(t)+5 t^{4} h(t)
$$

and

$$
y_{2}^{\prime \prime}=t^{5} h^{\prime \prime}(t)+10 t^{4} h^{\prime}(t)+20 t^{3} h(t) .
$$

Substituting into the ODE gives $\left(t^{5} h^{\prime \prime}(t)+10 t^{4} h^{\prime}(t)+20 t^{3} h(t)\right)-$ $\left(\frac{3}{t}\right)\left(t^{5} h^{\prime}(t)+5 t^{4} h(t)\right)-\left(\frac{5}{t^{2}}\right) t^{5} h(t)=0$. This equation simplifies to $t^{5} h^{\prime \prime}(t)+7 t^{4} h^{\prime}(t)=0$, or

$$
t h^{\prime \prime}(t)+7 h^{\prime}(t)=0
$$

If we let $g(t)=h^{\prime}(t)$, this equation becomes the separable first-order ODE $g^{\prime}(t)+\left(\frac{7}{t}\right) g(t)=0$, or $\frac{g^{\prime}(t)}{g(t)}=-\frac{7}{t}$. Integrating and simplifying
gives $g(t)=\frac{1}{t^{7}}$. Therefore, $h^{\prime}(t)=\frac{1}{t^{7}}$, so $h(t)=\frac{-1}{6 t^{6}}$. Since the solution we are seeking is $y_{2}=t^{5} h(t)$, we get the solution $y_{2}=\frac{-1}{6 t}$. (Multiplying be a non-zero constant will still give a solution which forms a fundamental set of solutions with y_{1}, so we can also use the function $y_{2}=\frac{1}{t}$.)

$$
\text { Answer: } y_{2}=\frac{-1}{6 t}
$$

