MATH 203, Section 001 Fall, 2011 Exam 4 Name Solutions

1. Let P_1 denote the vector space of polynomials of degree at most 1. Let $T: P_1 \to \mathbb{R}^3$ be given by $T(ax+b) = \begin{pmatrix} a \\ ab \\ a \end{pmatrix}$. Determine if T is a linear transformation. Give *clear* reasons for your answer.

$$T(5(2x+3)) = T(10x+15) = \begin{pmatrix} 10\\150\\10 \end{pmatrix}, \text{ but } 5T(2x+3) = 5 \begin{pmatrix} 2\\6\\2 \end{pmatrix} = (10)$$

 $\begin{pmatrix} 10\\ 30\\ 10 \end{pmatrix} \neq T(5(2x+3)), \text{ so } T \text{ is not a linear transformation.}$ (Of course, there are many other examples that work.)

- \Box T is a linear transformation. \boxtimes T is not a linear transformation.
 - 2. Suppose that \mathcal{B} is the basis for \mathbb{R}^2 such that the change of coordinate matrix $P_{\mathcal{B}}$ from \mathcal{B} to the standard basis is given by $P_{\mathcal{B}} = \begin{bmatrix} 4 & 1 \\ 3 & 0 \end{bmatrix}$. If

$$[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} 2\\ -3 \end{bmatrix}$$
, find \vec{v} .

 $\vec{v} = P_{\mathcal{B}}[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} 4 & 1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}.$

3. Suppose that \mathcal{B} is the basis for \mathbb{R}^2 such that the change of coordinate matrix $P_{\mathcal{B}}$ from \mathcal{B} to the standard basis is given by $P_{\mathcal{B}} = \begin{vmatrix} 4 & 1 \\ 3 & 0 \end{vmatrix}$. Find the change of basis matrix from the standard basis to \mathcal{B}

The change of basis matrix from the standard basis to \mathcal{B} is $P_{\mathcal{B}}^{-1} = \left(\frac{1}{\det(P_{\mathcal{B}})}\right) \begin{bmatrix} 0 & -1 \\ -3 & 4 \end{bmatrix} = \left(\frac{1}{-3}\right) \begin{bmatrix} 0 & -1 \\ -3 & 4 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{3} \\ 1 & \frac{-4}{2} \end{bmatrix}.$

An

nswer:				
	$\left[\begin{array}{c}0\\1\end{array}\right]$	$\begin{bmatrix} \frac{1}{3} \\ -\frac{4}{3} \end{bmatrix}$		

4. Let the bases \mathcal{B} and \mathcal{C} for \mathbb{R}^2 be given by $\mathcal{B} = \{ \begin{vmatrix} 1 \\ 1 \end{vmatrix}, \begin{vmatrix} 1 \\ -1 \end{vmatrix} \}$ and $\mathcal{C} = \{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix} \}.$ Find the change of basis matrix $_{\mathcal{C} \leftarrow \mathcal{B}}$.

The matrix $_{\mathcal{C} \leftarrow \mathcal{B}}^{P}$ is given by $_{\mathcal{C} \leftarrow \mathcal{B}}^{P} = \left| \begin{array}{c|c} 1 \\ 1 \\ \end{array} \right|_{\mathcal{C}} \left| \begin{array}{c|c} 1 \\ -1 \\ \end{array} \right|_{\mathcal{C}} \right|$, so we must solve the equations $\begin{bmatrix} 1\\1 \end{bmatrix} = x \begin{bmatrix} 2\\1 \end{bmatrix} + y \begin{bmatrix} 1\\0 \end{bmatrix}$ and $\begin{bmatrix} 1\\-1 \end{bmatrix} = x \begin{bmatrix} 2\\1 \end{bmatrix} + y \begin{bmatrix} 1\\0 \end{bmatrix}$. We can do both of these simultaneously if we row-reduce the matrix whose first two columns are the elements of ${\mathcal C}$ and whose second two columns are the elements of $\mathcal B.$ [Of course, it is fine to do these systems separately.] $\begin{bmatrix} 2 & 1 & | & 1 & 1 \\ 1 & 0 & | & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | & 1 & -1 \\ 2 & 1 & | & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | & 1 & -1 \\ 0 & 1 & | & -1 & 3 \end{bmatrix}.$ Therefore, $_{\mathcal{C}\leftarrow\mathcal{B}}^{P}=\left[\begin{array}{cc}1&-1\\-1&3\end{array}\right].$

5. Suppose that \mathcal{B} is the basis for \mathbb{R}^3 given by $\left\{ \begin{array}{c|c} 1 \\ 1 \\ 1 \end{array}, \begin{array}{c|c} 1 \\ 1 \\ 1 \end{array}, \begin{array}{c|c} 1 \\ 1 \\ 0 \end{array} \right\}$ and \mathcal{C} is a basis for \mathbb{R}^3 such that the change of basis matrix $\mathcal{C}_{\leftarrow \mathcal{B}}^P$ is $\begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & -1 \\ 3 & -2 & 1 \end{bmatrix}$. Find $\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}_{c}$. Since $\begin{bmatrix} 3\\2\\1 \end{bmatrix} = \begin{bmatrix} 1\\1\\1 \end{bmatrix} + \begin{bmatrix} 1\\1\\0 \end{bmatrix} + \begin{bmatrix} 1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 3\\2\\1 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$. Therefore, $\begin{bmatrix} 3\\2\\1 \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} 1&0&2\\1&1&-1\\3&-2&1 \end{bmatrix} \begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} 3\\1\\2 \end{bmatrix}$. Answer: 3 1 2 6. One eigenvalue of the matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ is 2. Find an eigenvector corresponding to the eigenvalue 2. We want a non-zero vector $\vec{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ such that $A\vec{v} = 2\vec{v}$, that is, we want a non-trivial solution of the homogeneous system $\begin{array}{c} A\vec{v}-2\vec{v}=\vec{0}. \quad \text{To find such a solution, we row-reduce the coefficient} \\ \text{matrix.} \quad \begin{bmatrix} -1 & 0 & 1 \\ 1 & -3 & 0 \\ 1 & 0 & -1 \end{bmatrix} \sim \begin{bmatrix} -1 & 0 & 1 \\ 0 & -3 & 1 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -\frac{1}{3} \\ 0 & 0 & 0 \end{bmatrix}. \text{ Therefore,} \\ \textbf{z is free, with } x=z \text{ and } y=\frac{z}{3}. \quad \text{Hence, one eigenvector is} \end{array}$

 $\begin{vmatrix} 1 \\ 3 \end{vmatrix}$.

Answer:		
	[3]	
	1	
	3	

7. Find the characteristic polynomial $p(\lambda)$ of the matrix $A = \begin{bmatrix} 0 & -2 & 0 \\ 2 & 3 & -1 \\ 0 & 1 & 1 \end{bmatrix}$.

$$\begin{split} p(\lambda) &= det(\lambda I - A) = det\begin{pmatrix} \lambda & 2 & 0\\ -2 & \lambda - 3 & 1\\ 0 & -1 & \lambda - 1 \end{bmatrix}) = \lambda[(\lambda - 3)(\lambda - 1) + 1] + 2[2(\lambda - 1)] = \lambda^3 - 4\lambda^2 + 8\lambda - 4. \end{split}$$

$$p(\lambda) =: \lambda^3 - 4\lambda^2 + 8\lambda - 4$$

8. Let $A = \begin{bmatrix} 3 & -2 \\ -1 & 4 \end{bmatrix}$. Find all eigenvalues of A.

The characteristic polynomial of A is $p(\lambda) = det(\lambda I - A) = det \begin{bmatrix} \lambda - 2 & 2 \\ 1 & \lambda - 4 \end{bmatrix} = \lambda^2 + 7\lambda + 10 = (\lambda - 2)(\lambda - 5)$. Therefore, the eigenvalues are 2 and 5.

Answer: 2 and 5 9. Let $A = \begin{bmatrix} 3 & 5 & 0 & 1 \\ 2 & -1 & 2 & 1 \\ 1 & 2 & -1 & 0 \\ 6 & 3 & 0 & 2 \end{bmatrix}$. Then the characteristic polynomial of A is $p(\lambda) = \lambda^4 - 3\lambda^3 - 26\lambda^2 - 15\lambda + 7$. Find $A^5 - 3A^4 - 26A^3 - 15A^2 + A$. [Hint: The easiest way to do this is to use the Cayley-Hamilton Theorem.] By the Cayley-Hamilton Theorem, $p(A) = A^4 - 3A^3 - 26A^2 - 15A + 7I = 0$.

Long division gives that $\lambda^5 - 3\lambda^4 - 26\lambda^3 - 15\lambda^2 + \lambda = \lambda p(\lambda) - 6\lambda$, so $A^5 - 3A^4 - 26A^3 - 15A^2 + A = AP(A) - 6A = A \cdot 0 - 6A = \begin{bmatrix} -18 & -30 & 0 & -6 \\ -12 & 6 & -12 & -6 \\ -6 & -12 & 6 & 0 \\ -36 & -18 & 0 & -12 \end{bmatrix}$.

Ansv	ver:				
	[-18]	-30	0	-6	
	-12	6	-12	-6	
	-6	-12	6	0	
	-36	-18	0	-12	
	-			_	

10. Let $A = \begin{bmatrix} 3 & 4 \\ 2 & 1 \end{bmatrix}$. Then the eigenvalues of A are -1 and 5, with corresponding eigenvectors $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Find a matrix P such that $P^{-1}AP$ is a diagonal matrix D and find D.

We take P to be $P_{\mathcal{B}}$ where \mathcal{B} is a basis consisting of eigenvectors of A. Since $\begin{bmatrix} 1\\ -1 \end{bmatrix}$ and $\begin{bmatrix} 2\\ 1 \end{bmatrix}$ are linearly independent eigenvectors, we can take $P = \begin{bmatrix} 1 & 2\\ -1 & 1 \end{bmatrix}$. The matrix D has the corresponding eigenvalues on the main diagonal, so $D = \begin{bmatrix} -1 & 0\\ 0 & 5 \end{bmatrix}$.

$$P =: \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \qquad D =: \begin{bmatrix} -1 & 0 \\ 0 & 5 \end{bmatrix}$$