1. Let P_{1} denote the vector space of polynomials of degree at most 1 . Let $T: P_{1} \rightarrow \mathbb{R}^{3}$ be given by $T(a x+b)=\left(\begin{array}{c}a \\ a b \\ a\end{array}\right)$. Determine if T is a linear transformation. Give clear reasons for your answer.

$$
\begin{aligned}
& T(5(2 x+3))=T(10 x+15)=\left(\begin{array}{c}
10 \\
150 \\
10
\end{array}\right) \text {, but } 5 T(2 x+3)=5\left(\begin{array}{l}
2 \\
6 \\
2
\end{array}\right)= \\
& \left(\begin{array}{c}
10 \\
30 \\
10
\end{array}\right) \neq T(5(2 x+3)) \text {, so } T \text { is not a linear transformation. } \\
& \text { (Of course, there are many other examples that work.) }
\end{aligned}
$$$T$ is a linear transformation. $\quad T$ is not a linear transformation.

2. Suppose that \mathcal{B} is the basis for \mathbb{R}^{2} such that the change of coordinate matrix $P_{\mathcal{B}}$ from \mathcal{B} to the standard basis is given by $P_{\mathcal{B}}=\left[\begin{array}{ll}4 & 1 \\ 3 & 0\end{array}\right]$. If

$$
\begin{aligned}
& {[\vec{v}]_{\mathcal{B}}=\left[\begin{array}{r}
2 \\
-3
\end{array}\right], \text { find } \vec{v} .} \\
& \vec{v}=P_{\mathcal{B}}[\vec{v}]_{\mathcal{B}}=\left[\begin{array}{ll}
4 & 1 \\
3 & 0
\end{array}\right]\left[\begin{array}{r}
2 \\
-3
\end{array}\right]=\left[\begin{array}{l}
5 \\
6
\end{array}\right] .
\end{aligned}
$$

Answer:
3. Suppose that \mathcal{B} is the basis for \mathbb{R}^{2} such that the change of coordinate matrix $P_{\mathcal{B}}$ from \mathcal{B} to the standard basis is given by $P_{\mathcal{B}}=\left[\begin{array}{ll}4 & 1 \\ 3 & 0\end{array}\right]$. Find the change of basis matrix from the standard basis to $\mathcal{\mathcal { B }}$.

The change of basis matrix from the standard basis to \mathcal{B} is $P_{\mathcal{B}}^{-1}=$ $\left(\frac{1}{\operatorname{det}\left(P_{\mathcal{B})}\right)}\right)\left[\begin{array}{rr}0 & -1 \\ -3 & 4\end{array}\right]=\left(\frac{1}{-3}\right)\left[\begin{array}{rr}0 & -1 \\ -3 & 4\end{array}\right]=\left[\begin{array}{rr}0 & \frac{1}{3} \\ 1 & \frac{-4}{3}\end{array}\right]$.

Answer:

$$
\left[\begin{array}{rr}
0 & \frac{1}{3} \\
1 & \frac{-4}{3}
\end{array}\right]
$$

4. Let the bases \mathcal{B} and \mathcal{C} for \mathbb{R}^{2} be given by $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ -1\end{array}\right]\right\}$ and

 solve the equations $\left[\begin{array}{l}1 \\ 1\end{array}\right]=x\left[\begin{array}{l}2 \\ 1\end{array}\right]+y\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{r}1 \\ -1\end{array}\right]=x\left[\begin{array}{l}2 \\ 1\end{array}\right]+$ $y\left[\begin{array}{l}1 \\ 0\end{array}\right]$. We can do both of these simultaneously if we row-reduce the matrix whose first two columns are the elements of \mathcal{C} and whose second two columns are the elements of \mathcal{B}. [Of course, it is fine to do these systems separately.]
$\left[\begin{array}{rr|rr}2 & 1 & 1 & 1 \\ 1 & 0 & 1 & -1\end{array}\right] \sim\left[\begin{array}{rr|rr}1 & 0 & 1 & -1 \\ 2 & 1 & 1 & 1\end{array}\right] \sim\left[\begin{array}{rr|rr}1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 3\end{array}\right]$.
Therefore, $\underset{\mathcal{C} \leftarrow \mathcal{B}}{\stackrel{P}{\leftarrow}}=\left[\begin{array}{rr}1 & -1 \\ -1 & 3\end{array}\right]$.

Answer:

$$
\left[\begin{array}{rr}
1 & -1 \\
-1 & 3
\end{array}\right]
$$

5. Suppose that \mathcal{B} is the basis for \mathbb{R}^{3} given by $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$ and \mathcal{C} is a basis for \mathbb{R}^{3} such that the change of basis matrix ${ }_{\mathcal{C}}^{{ }_{\leftarrow}{ }_{\mathcal{B}}}$ is $\left[\begin{array}{rrr}1 & 0 & 2 \\ 1 & 1 & -1 \\ 3 & -2 & 1\end{array}\right]$. Find $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]_{\mathcal{C}}$.

Since $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]_{\mathcal{B}}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Therefore, $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]_{\mathcal{C}}=\left[\begin{array}{rrr}1 & 0 & 2 \\ 1 & 1 & -1 \\ 3 & -2 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]$.

Answer:

$$
\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]
$$

6. One eigenvalue of the matrix $A=\left[\begin{array}{rrr}1 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & 1\end{array}\right]$ is 2 . Find an eigenvector corresponding to the eigenvalue 2 .

We want a non-zero vector $\vec{v}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ such that $A \vec{v}=2 \vec{v}$, that is, we want a non-trivial solution of the homogeneous system $A \vec{v}-2 \vec{v}=\overrightarrow{0}$. To find such a solution, we row-reduce the coefficient matrix. $\left[\begin{array}{rrr}-1 & 0 & 1 \\ 1 & -3 & 0 \\ 1 & 0 & -1\end{array}\right] \sim\left[\begin{array}{rrr}-1 & 0 & 1 \\ 0 & -3 & 1 \\ 0 & 0 & 0\end{array}\right] \sim\left[\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & -\frac{1}{3} \\ 0 & 0 & 0\end{array}\right]$. Therefore, z is free, with $x=z$ and $y=\frac{z}{3}$. Hence, one eigenvector is $\left[\begin{array}{l}3 \\ 1 \\ 3\end{array}\right]$.

Answer:

7. Find the characteristic polynomial $p(\lambda)$ of the matrix $A=\left[\begin{array}{rrr}0 & -2 & 0 \\ 2 & 3 & -1 \\ 0 & 1 & 1\end{array}\right]$.

$$
\begin{aligned}
& p(\lambda)=\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\left[\begin{array}{rrr}
\lambda & 2 & 0 \\
-2 & \lambda-3 & 1 \\
0 & -1 & \lambda-1
\end{array}\right]\right)=\lambda[(\lambda-3)(\lambda-1)+ \\
& 1]+2[2(\lambda-1)]=\lambda^{3}-4 \lambda^{2}+8 \lambda-4 .
\end{aligned}
$$

$$
p(\lambda)=: \lambda^{3}-4 \lambda^{2}+8 \lambda-4
$$

8. Let $A=\left[\begin{array}{rr}3 & -2 \\ -1 & 4\end{array}\right]$. Find all eigenvalues of A.

The characteristic polynomial of A is $p(\lambda)=\operatorname{det}(\lambda I-A)=$ $\operatorname{det}\left[\begin{array}{rr}\lambda-2 & 2 \\ 1 & \lambda-4\end{array}\right]=\lambda^{2}+7 \lambda+10=(\lambda-2)(\lambda-5)$. Therefore, the eigenvalues are 2 and 5 .
Answer: 2 and 5
9. Let $A=\left[\begin{array}{rrrr}3 & 5 & 0 & 1 \\ 2 & -1 & 2 & 1 \\ 1 & 2 & -1 & 0 \\ 6 & 3 & 0 & 2\end{array}\right]$. Then the characteristic polynomial of A is $p(\lambda)=\lambda^{4}-3 \lambda^{3}-26 \lambda^{2}-15 \lambda+7$. Find $A^{5}-3 A^{4}-26 A^{3}-15 A^{2}+A$. [Hint: The easiest way to do this is to use the Cayley-Hamilton Theorem.]

By the Cayley-Hamilton Theorem, $p(A)=A^{4}-3 A^{3}-26 A^{2}-15 A+$ $7 I=0$.
Long division gives that $\lambda^{5}-3 \lambda^{4}-26 \lambda^{3}-15 \lambda^{2}+\lambda=\lambda p(\lambda)-6 \lambda$, so $A^{5}-3 A^{4}-26 A^{3}-15 A^{2}+A=A P(A)-6 A=A \cdot 0-6 A=$ $\left[\begin{array}{rrrr}-18 & -30 & 0 & -6 \\ -12 & 6 & -12 & -6 \\ -6 & -12 & 6 & 0 \\ -36 & -18 & 0 & -12\end{array}\right]$.

Answer:

$$
\left[\begin{array}{rrrr}
-18 & -30 & 0 & -6 \\
-12 & 6 & -12 & -6 \\
-6 & -12 & 6 & 0 \\
-36 & -18 & 0 & -12
\end{array}\right]
$$

10. Let $A=\left[\begin{array}{ll}3 & 4 \\ 2 & 1\end{array}\right]$. Then the eigenvalues of A are -1 and 5 , with corresponding eigenvectors $\left[\begin{array}{r}1 \\ -1\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Find a matrix P such that $P^{-1} A P$ is a diagonal matrix D and find D.

We take P to be $P_{\mathcal{B}}$ where \mathcal{B} is a basis consisting of eigenvectors of A. Since $\left[\begin{array}{r}1 \\ -1\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ are linearly independent eigenvectors, we can take $P=\left[\begin{array}{rr}1 & 2 \\ -1 & 1\end{array}\right]$. The matrix D has the corresponding eigenvalues on the main diagonal, so $D=\left[\begin{array}{rr}-1 & 0 \\ 0 & 5\end{array}\right]$.

$$
P=: \quad\left[\begin{array}{rr}
1 & 2 \\
-1 & 1
\end{array}\right]
$$

$$
D=: \quad\left[\begin{array}{rr}
-1 & 0 \\
0 & 5
\end{array}\right]
$$

