1. Let $A=\left(\begin{array}{cc}1 & 3 \\ 2 & 4 \\ -1 & -1\end{array}\right)$ and let $\vec{b}=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)$. Determine whether or not \vec{b} is in the column space of A. Be sure that your work makes clear how you are arriving and your answer.

We row reduce the augmented matrix $\left(\begin{array}{rr|r}1 & 3 & 1 \\ 2 & 4 & -2 \\ -1 & -1 & 3\end{array}\right)$, to get $\left(\begin{array}{rr|r}1 & 3 & 1 \\ 2 & 4 & -2 \\ -1 & -1 & 3\end{array}\right) \sim\left(\begin{array}{rr|r}1 & 3 & 1 \\ 0 & -2 & -4 \\ 0 & 2 & 4\end{array}\right) \sim\left(\begin{array}{ll|l}1 & 3 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right) \sim\left(\begin{array}{rr|r}1 & 0 & -5 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right)$.
Therefore, $\vec{b}=-5\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)+2\left(\begin{array}{c}3 \\ 4 \\ -1\end{array}\right)$, so \vec{b} is in the column space of A.
$\boxtimes \vec{b}$ is in the column space of A.\vec{b} is not in the column space of A
2. Let $A=\left(\begin{array}{rrr}1 & 3 & -2 \\ 2 & 0 & -3\end{array}\right)$ and let $\vec{b}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$. Determine whether or not \vec{b} is in the null space of A. Be sure that your work makes clear how you are arriving and your answer.

$$
\begin{aligned}
& A \vec{b}=\left(\begin{array}{lll}
1 & 3 & -2 \\
2 & 0 & -3
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)=\binom{0}{-4} \neq \overrightarrow{0} \text {. Therefore, } \vec{b} \text { is not } \\
& \text { in the null spaced of } A
\end{aligned}
$$$\vec{b}$ is in the null space of A. $\boxtimes \vec{b}$ is not in the null space of A

For problems 3 and 4 , let $A=\left[\begin{array}{rrrrr}1 & 3 & 0 & 2 & -1 \\ 2 & 6 & 1 & 0 & 1 \\ 4 & 12 & 3 & -4 & 5\end{array}\right]$. Then the rowreduced echelon form of A is $\left[\begin{array}{rrrrr}1 & 3 & 0 & 2 & -1 \\ 0 & 0 & 1 & -4 & 3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
3. Find a basis for the null space of A.

If $\vec{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]$ is in the null space of A, then from the row-
reduced echelon matrix, we get $x_{1}=-3 x_{2}-2 x_{4}+x_{5}$ and $x_{3}=$
reduced echelon matrix, we get $x_{1}=-3 x_{2}-2 x_{4}+x_{5}$ and $x_{3}=$ $4 x_{4}-3 x_{5}$ so $\vec{x}=\left[\begin{array}{r}-3 x_{2}-2 x_{4}+x_{5} \\ x_{2} \\ 4 x_{4}-3 x_{5} \\ x_{4} \\ x_{5}\end{array}\right]=x_{2}\left[\begin{array}{r}-3 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{r}-2 \\ 0 \\ 4 \\ 1 \\ 0\end{array}\right]+$ $x_{5}\left[\begin{array}{r}1 \\ 0 \\ -3 \\ 0 \\ 1\end{array}\right]$. Therefore, a bas
$\left\{\left[\begin{array}{r}-3 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-2 \\ 0 \\ 4 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}1 \\ 0 \\ -3 \\ 0 \\ 1\end{array}\right]\right\}$.

Answer:

$$
\left\{\left[\begin{array}{r}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-2 \\
0 \\
4 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
0 \\
-3 \\
0 \\
1
\end{array}\right]\right\}
$$

4. Find a basis for the column space of A.

Since the pivot columns of A are the first and third, a basis for the column space is formed by the first and third columns of A. Therefore, a basis for the column space is $\left\{\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 3\end{array}\right]\right\}$.
Answer:
$\left\{\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 3\end{array}\right]\right\}$
5. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{l}2 x+y \\ 3 x+y\end{array}\right]$. Determine whether or not T is invertible, and if it is, find T^{-1}.

The standard matrix for T is $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 1\end{array}\right]$. Since $(2)(1)-(3)(1)=$
$-1 \neq 0, A$ is invertible and $T^{-1}=T_{A^{-1}} . \quad A^{-1}=\frac{1}{(2)(1)-(3)(1)}\left[\begin{array}{rr}1 & -1 \\ -3 & 2\end{array}\right]=$ $\left[\begin{array}{rr}-1 & 1 \\ 3 & -2\end{array}\right]$. Therefore, $T^{-1}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left(\left[\begin{array}{c}-x+y \\ 3 x-2 y\end{array}\right]\right)$.

$$
\begin{aligned}
& \text { Answer: } \\
& \qquad T^{-1}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left(\left[\begin{array}{c}
-x+y \\
3 x-2 y
\end{array}\right]\right)
\end{aligned}
$$

6. Let $A=\left[\begin{array}{rrr}2 & 3 & -1 \\ -2 & 1 & 5 \\ 5 & 2 & 0\end{array}\right]$. Find $\operatorname{det} A$.

Expanding along the third row we get $\operatorname{det} A$
(5) $\operatorname{det}\left[\begin{array}{rr}3 & -1 \\ 1 & 5\end{array}\right] \quad-(2) \operatorname{det}\left[\begin{array}{rr}2 & -1 \\ -2 & 5\end{array}\right]+(0) \operatorname{det}\left[\begin{array}{rr}2 & 3 \\ -2 & 1\end{array}\right]=$
$(5)(16)-(2)(8)+0=64$.

Answer:
64

7. Suppose that A is a 4×4 matrix such that $\operatorname{det} A=3$, and that B is obtained from A by interchanging the first and second rows. Find $\operatorname{det}(2 B)$.

Since B is obtained from A by interchanging two rows, $\operatorname{det} B=$ $-\operatorname{det} A=-3$. Since the matrix $2 B$ is obtained from B by multiplying each of four rows by $2, \operatorname{det}(2 B)=2^{4} \operatorname{det} B=16(-3)=-48$.

$$
\operatorname{det}(2 B)=-48
$$

8. Let $A=\left[\begin{array}{rrrr}3 & 8 & -2 & 12 \\ 5 & 2 & 0 & -2 \\ 1 & 0 & 8 & 3 \\ 6 & 6 & 0 & 5\end{array}\right]$ and let $\vec{b}=\left[\begin{array}{l}5 \\ 0 \\ 0 \\ 0\end{array}\right]$. Use Cramer's Rule and the fact that $\operatorname{det} A=40$ to find x_{1} where $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$ is a solution of the system of equations $A \vec{x}=\vec{b}$.

By Cramer's Rule, $x_{1}=\frac{\operatorname{det}\left[\begin{array}{rrrr}5 & 8 & -2 & 12 \\ 0 & 2 & 0 & -2 \\ 0 & 0 & 8 & 3 \\ 0 & 6 & 0 & 5\end{array}\right]}{\operatorname{det} A}=\frac{\operatorname{det}\left[\begin{array}{rrrr}5 & 8 & -2 & 12 \\ 0 & 2 & 0 & -2 \\ 0 & 0 & 8 & 3 \\ 0 & 6 & 0 & 5\end{array}\right]}{40}$.

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{rrrr}
5 & 8 & -2 & 12 \\
0 & 2 & 0 & -2 \\
0 & 0 & 8 & 3 \\
0 & 6 & 0 & 5
\end{array}\right]=\operatorname{det}\left[\begin{array}{rrrr}
5 & 8 & -2 & 12 \\
0 & 2 & 0 & -2 \\
0 & 0 & 8 & 3 \\
0 & 0 & 0 & 11
\end{array}\right]=880 . \text { Therefore, } \\
& x_{1}=\frac{880}{40}=22 .
\end{aligned}
$$

$$
x_{1}=22
$$

9. For each of the following subsets of \mathbb{R}^{3}, determine if the subset is a subspace of \mathbb{R}^{3}.
(a) $W=\left\{\left[\begin{array}{r}x \\ y \\ x+1\end{array}\right]: x, y \in \mathbb{R}\right\}$.

Since for each vector in W, the first and third component are different, the zero vector is not in W so W is not a subspace of \mathbb{R}^{3}.W is a subspace of \mathbb{R}^{3}.
$\boxtimes W$ is not a subspace of \mathbb{R}^{3}.
(b) $U=\left\{\left[\begin{array}{r}x \\ 2 x \\ 0\end{array}\right]: x \in \mathbb{R}\right\}$.

$$
\begin{aligned}
& \text { Since } \overrightarrow{0}=\left[\begin{array}{r}
0 \\
2 \cdot 0 \\
0
\end{array}\right], \overrightarrow{0} \in U \text {. If } \vec{x}=\left[\begin{array}{r}
x \\
2 x \\
0
\end{array}\right] \text { and } \vec{y}=\left[\begin{array}{r}
y \\
2 y \\
0
\end{array}\right] \\
& \text { are elements of } U \text {, then } \vec{x}+\vec{y}=\left[\begin{array}{r}
x+y \\
2(x+y) \\
0
\end{array}\right] \in U \text {. If } \\
& \vec{x}=\left[\begin{array}{r}
x \\
2 x \\
0
\end{array}\right] \in U \text { and } c \text { is a scalar, then } c \vec{x}=\left[\begin{array}{r}
c x \\
2(c x) \\
0
\end{array}\right] \in \\
& U \text {. Therefore, } U \text { is a subspace of } \mathbb{R}^{3} .
\end{aligned}
$$

$\boxtimes U$ is a subspace of \mathbb{R}^{3}.U is not a subspace of \mathbb{R}^{3}.
10. Let $M_{2 \times 3}$ denote the vector space of 2×3 matrices, and let H the subset of $M_{2 \times 3}$ consisting of the 2×3 matrices having at least one entry which is 0 . Determine whether or not H is a subspace of $M_{2 \times 3}$ and give a reason for your answer.

It is not the case that the sum of elements of H is always an element of H. For example, if $A=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ and $B=$ $\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$, then A and B are both elements of H but $A+B$ is not an element of H. Therefore, H is not a subspace of $M_{2 \times 3}$ 。
$\boxtimes H$ is not a subspace of \mathbb{R}^{3}.

Reason:
The sum of elements in H is not necessarily in H.

