1. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=$ $\left[\begin{array}{r}x+2 y+3 z \\ x-7 y-z\end{array}\right]$. Find the standard matrix of T.

The columns of the standard matrix are $T\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right], T\left(\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\right.\right.$ $\left[\begin{array}{r}2 \\ -7\end{array}\right]$, and $T\left(\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{r}3 \\ -1\end{array}\right]\right.$, so the standard matrix is $\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & -7 & -1\end{array}\right]$.

$$
\begin{array}{|l}
\text { Answer: } \\
{\left[\begin{array}{ccc}
1 & 2 & 3 \\
1 & -7 & -1
\end{array}\right]}
\end{array}
$$

2. Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation such that $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=$

$$
\begin{aligned}
& {\left[\begin{array}{r}
2 \\
-1 \\
3
\end{array}\right] \text { and } T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
4 \\
1
\end{array}\right] . \text { Find } T\left(\left[\begin{array}{l}
5 \\
3
\end{array}\right]\right) .\left[\operatorname{Hint}:\left[\begin{array}{l}
5 \\
3
\end{array}\right]=\right.} \\
& \left.2\left[\begin{array}{l}
1 \\
0
\end{array}\right]+3\left[\begin{array}{l}
1 \\
1
\end{array}\right] .\right] \\
& T\left(\left[\begin{array}{r}
5 \\
3
\end{array}\right]\right)=T\left(2\left[\begin{array}{l}
1 \\
0
\end{array}\right]+3\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=2 T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+3 T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)= \\
& 2\left[\begin{array}{r}
2 \\
-1 \\
3
\end{array}\right]+3\left[\begin{array}{l}
0 \\
4 \\
1
\end{array}\right]=\left[\begin{array}{r}
4 \\
10 \\
9
\end{array}\right] .
\end{aligned}
$$

$$
T\left(\left[\begin{array}{l}
5 \\
3
\end{array}\right]\right)=\left[\begin{array}{r}
4 \\
10 \\
9
\end{array}\right]
$$

3. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear transformation whose standard matrix is $A=\left[\begin{array}{rrr}2 & 4 & 6 \\ 3 & -1 & -2\end{array}\right]$. Find $T\left(\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]\right)$.
T is given by $T(\vec{x})=A \vec{x}$. Therefore, $T\left(\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]\right)=\left[\begin{array}{rrr}2 & 4 & 6 \\ 3 & -1 & -2\end{array}\right]\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]=$ $\left[\begin{array}{r}44 \\ -10\end{array}\right]$.

Answer:

$$
\left[\begin{array}{r}
44 \\
-10
\end{array}\right]
$$

4. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=$ $\left[\begin{array}{r}2 \\ 3 \\ -1\end{array}\right]$ and $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]$. Find the standard matrix of T.
[Hint: $\left.\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]-\left[\begin{array}{l}1 \\ 0\end{array}\right].\right]$
Since $\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]-\left[\begin{array}{l}1 \\ 0\end{array}\right], T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)-T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=$ $\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]-\left[\begin{array}{r}2 \\ 3 \\ -1\end{array}\right]=\left[\begin{array}{r}-1 \\ -3 \\ 0\end{array}\right]$. Therefore, the standard matrix of T is $\left[\begin{array}{rr}2 & -1 \\ 3 & -3 \\ -1 & 0\end{array}\right]$.

Answer:

$$
\left[\begin{array}{rr}
2 & -1 \\
3 & -3 \\
-1 & 0
\end{array}\right]
$$

Problems 5 and 6 refer to the following matrices. Let $A=\left[\begin{array}{lll}2 & -1 & 0 \\ 5 & -3 & 2\end{array}\right]$, $B=\left[\begin{array}{rrr}1 & 4 & 1 \\ -2 & 0 & -1\end{array}\right]$, and $C=\left[\begin{array}{ll}1 & 3 \\ 2 & 0 \\ 5 & 1\end{array}\right]$
5. (a) Find $A+3 B$, or, if $A+3 B$ is not defined, write " $A+3 B$ is not defined" in the answer box.

$$
A+3 B=\left[\begin{array}{rrr}
2 & -1 & 0 \\
5 & -3 & 2
\end{array}\right]+3\left[\begin{array}{rrr}
1 & 4 & 1 \\
-2 & 0 & -1
\end{array}\right]=\left[\begin{array}{rrr}
5 & 11 & 3 \\
-1 & -3 & -1
\end{array}\right] .
$$

Answer:

$$
\left[\begin{array}{rrr}
5 & 11 & 3 \\
-1 & -3 & -1
\end{array}\right]
$$

(b) Find $A+3 C$, or, if $A+3 C$ is not defined, write " $A+3 C$ is not defined" in the answer box.

Since A is a 2×3 matrix and C is a 3×2 matrix, $A+3 C$ is not defined.

Answer:
$\qquad A+3 C$ is not defined.

6. (a) Find $A B$, or, if $A B$ is not defined, write " $A B$ is not defined" in the answer box.

Since A is a 2×3 matrix and B is a 2×3 matrix, $A B$ is not defined.

Answer:
$A B$ is not defined.
(b) Find $A C$, or, if $A C$ is not defined, write " $A C$ is not defined" in the answer box.

$$
\left.\begin{array}{l}
A C \\
A C \\
{\left[\begin{array}{lll}
2(1)+(-1)(2)+0(5) & 2(3)+(-1)(0)+0(1) \\
5 & -3 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
2 & 0 \\
5 & 1
\end{array}\right]} \\
5(1)+(-3)(2)+2(5) \\
5(3)+(-3)(0)+2(1)
\end{array}\right]=\left[\begin{array}{rr}
0 & 6 \\
9 & 17
\end{array}\right] . .
$$

Answer:

$$
\left[\begin{array}{rr}
0 & 6 \\
9 & 17
\end{array}\right]
$$

7. Let $A=\left[\begin{array}{rrr}3 & 0 & -5 \\ 2 & 2 & 4 \\ 1 & 6 & -3\end{array}\right]$. Find a symmetric matrix B and a skewsymmetric matrix C such that $A=B+C$.

Let $B=\left(\frac{1}{2}\right)\left(A+A^{T}\right)=\left(\frac{1}{2}\right)\left(\left[\begin{array}{rrr}3 & 0 & -5 \\ 2 & 2 & 4 \\ 1 & 6 & -3\end{array}\right]+\left[\begin{array}{rrr}3 & 2 & 1 \\ 0 & 2 & 6 \\ -5 & 4 & -3\end{array}\right]\right)=$ $\left[\begin{array}{rrr}3 & 1 & -2 \\ 1 & 2 & 5 \\ -2 & 5 & -3\end{array}\right]$
and let $C=\left(\frac{1}{2}\right)\left(A-A^{T}\right)=\left(\frac{1}{2}\right)\left(\left[\begin{array}{rrr}3 & 0 & -5 \\ 2 & 2 & 4 \\ 1 & 6 & -3\end{array}\right]-\left[\begin{array}{rrr}3 & 2 & 1 \\ 0 & 2 & 6 \\ -5 & 4 & -3\end{array}\right]\right)=$
$\left[\begin{array}{rrr}0 & -1 & -3 \\ 1 & 0 & -1 \\ 3 & 1 & 0\end{array}\right]$.
$B=\left[\begin{array}{rrr}3 & 1 & -2 \\ 1 & 2 & 5 \\ -2 & 5 & -3\end{array}\right]$
$C=\left[\begin{array}{rrr}0 & -1 & -3 \\ 1 & 0 & -1 \\ 3 & 1 & 0\end{array}\right]$
8. Determine whether the matrix $A=\left[\begin{array}{rrr}3 & 6 & 0 \\ 2 & 0 & -4 \\ 1 & 1 & 0\end{array}\right]$ is invertible, and if it is, find A^{-1}.

We row-reduce the matrix $A \mid I$.

Therefore, A is invertible and $A^{-1}=\left[\begin{array}{rrr}-\frac{1}{3} & 0 & 2 \\ \frac{1}{3} & 0 & -1 \\ -\frac{1}{6} & -\frac{1}{4} & 1\end{array}\right]$.

$$
\text { Answer: } A^{-1}=\left[\begin{array}{rrr}
-\frac{1}{3} & 0 & 2 \\
\frac{1}{3} & 0 & -1 \\
-\frac{1}{6} & -\frac{1}{4} & 1
\end{array}\right]
$$

9. Suppose that A is a 4×4 matrix such that $A^{-1}=\left[\begin{array}{rrrr}1 & -1 & 3 & 0 \\ 2 & 0 & 1 & 1 \\ 1 & 1 & 2 & 3 \\ 0 & 1 & 5 & -2\end{array}\right]$.

Solve the system of equations $A \vec{x}=\left[\begin{array}{l}4 \\ 2 \\ 5 \\ 0\end{array}\right]$, where $\vec{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$.
Multiplying both sides of the equation $A \vec{x}=\left[\begin{array}{l}4 \\ 2 \\ 5 \\ 0\end{array}\right]$ by A^{-1} gives $\vec{x}=I \vec{x}=A^{-1} A \vec{x}=A^{-1}\left[\begin{array}{l}4 \\ 2 \\ 5 \\ 0\end{array}\right]=\left[\begin{array}{rrrr}1 & -1 & 3 & 0 \\ 2 & 0 & 1 & 1 \\ 1 & 1 & 2 & 3 \\ 0 & 1 & 5 & -2\end{array}\right]\left[\begin{array}{l}4 \\ 2 \\ 5 \\ 0\end{array}\right]=\left[\begin{array}{l}17 \\ 13 \\ 16 \\ 27\end{array}\right]$. Therefore, $x_{1}=17, x_{2}=13, x_{3}=16$, and $x_{4}=27$.
$x_{1}=17 \quad x_{2}=13 \quad x_{3}=16 \quad x_{4}=27$
10. Suppose that A is a 3×3 matrix such that $A^{-1}=\left[\begin{array}{rrr}2 & -1 & 0 \\ 3 & 0 & 2 \\ 0 & 1 & 3\end{array}\right]$, and $B=\left[\begin{array}{rrr}4 & 1 & 1 \\ 2 & 2 & 2 \\ 0 & -1 & 1\end{array}\right]$. Find $\left(A B^{-1}\right)^{-1}$.
$\left(A B^{-1}\right)^{-1}=\left(B^{-1}\right)^{-1} A^{-1}=B A^{-1}=\left[\begin{array}{rrr}4 & 1 & 1 \\ 2 & 2 & 2 \\ 0 & -1 & 1\end{array}\right]\left[\begin{array}{rrr}2 & -1 & 0 \\ 3 & 0 & 2 \\ 0 & 1 & 3\end{array}\right]=$ $\left[\begin{array}{rrr}11 & -3 & 5 \\ 10 & 0 & 10 \\ -3 & 1 & 1\end{array}\right]$.
Answer: $\left[\begin{array}{rrr}11 & -3 & 5 \\ 10 & 0 & 10 \\ -3 & 1 & 1\end{array}\right]$

