MATH 203, Section 001 Fall, 2011 Exam 2 Name Solutions

1. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} x+2y+3z \\ x-7y-z \end{bmatrix}$. Find the standard matrix of T.

The columns of the standard matrix are $T\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{bmatrix} 1\\1 \end{pmatrix}$, $T\begin{pmatrix} 0\\1\\0 \end{bmatrix} = \begin{bmatrix} 2\\-7 \end{bmatrix}$, and $T\begin{pmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} 3\\-1 \end{bmatrix}$, so the standard matrix is $\begin{bmatrix} 1 & 2 & 3\\1 & -7 & -1 \end{bmatrix}$.

Answer:
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & -7 & -1 \end{bmatrix}$$

2. Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation such that $T(\begin{bmatrix} 1\\0 \end{bmatrix}) = \begin{bmatrix} 2\\-1\\3 \end{bmatrix}$ and $T(\begin{bmatrix} 1\\1 \end{bmatrix}) = \begin{bmatrix} 0\\4\\1 \end{bmatrix}$. Find $T(\begin{bmatrix} 5\\3 \end{bmatrix})$. [Hint: $\begin{bmatrix} 5\\3 \end{bmatrix} = 2\begin{bmatrix} 1\\0 \end{bmatrix} + 3\begin{bmatrix} 1\\1 \end{bmatrix}$.] $T(\begin{bmatrix} 5\\3 \end{bmatrix}) = T(2\begin{bmatrix} 1\\0 \end{bmatrix} + 3\begin{bmatrix} 1\\1 \end{bmatrix}) = 2T(\begin{bmatrix} 1\\0 \end{bmatrix}) + 3T(\begin{bmatrix} 1\\1 \end{bmatrix}) = 2\begin{bmatrix} 2\\-1\\3 \end{bmatrix} + 3\begin{bmatrix} 0\\4\\1 \end{bmatrix} = \begin{bmatrix} 4\\10\\9 \end{bmatrix}.$ $T(\begin{bmatrix} 5\\3 \end{bmatrix}) = \begin{bmatrix} 4\\10\\9 \end{bmatrix}.$

3. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation whose standard matrix is $A = \begin{bmatrix} 2 & 4 & 6 \\ 3 & -1 & -2 \end{bmatrix}$. Find $T(\begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix})$. T is given by $T(\vec{x}) = A\vec{x}$. Therefore, $T\begin{pmatrix} 1\\3\\5 \end{pmatrix} = \begin{bmatrix} 2 & 4 & 6\\ 3 & -1 & -2 \end{bmatrix} \begin{bmatrix} 1\\3\\5 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 6\\ 3 & -1 & -2 \end{bmatrix} \begin{bmatrix} 1\\3\\5 \end{bmatrix}$ $\begin{bmatrix} 44\\ -10 \end{bmatrix}$. Answer: $\begin{bmatrix} 44\\ -10 \end{bmatrix}$ 4. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation such that $T(\begin{vmatrix} 1 \\ 0 \end{vmatrix}) =$ $\begin{bmatrix} 2\\3\\-1 \end{bmatrix} \text{ and } T(\begin{bmatrix} 1\\1 \end{bmatrix}) = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}.$ Find the standard matrix of T. [Hint: $\begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 1\\1 \end{bmatrix} - \begin{bmatrix} 1\\0 \end{bmatrix}$.] Since $\begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 1\\1 \end{bmatrix} - \begin{bmatrix} 1\\0 \end{bmatrix}$, $T(\begin{bmatrix} 0\\1 \end{bmatrix}) = T(\begin{bmatrix} 1\\1 \end{bmatrix}) - T(\begin{bmatrix} 1\\0 \end{bmatrix}) = T(\begin{bmatrix} 1\\1 \end{bmatrix}) - T(\begin{bmatrix} 1\\0 \end{bmatrix}) = T(\begin{bmatrix} 1$ $\begin{bmatrix} 1\\0\\-1 \end{bmatrix} - \begin{bmatrix} 2\\3\\-1 \end{bmatrix} = \begin{bmatrix} -1\\-3\\0 \end{bmatrix}.$ Therefore, the standard matrix of T is $\begin{bmatrix} 2 & -1 \\ 3 & -3 \\ -1 & 0 \end{bmatrix}.$ Answer: $\begin{bmatrix} 2 & -1 \\ 3 & -3 \\ -1 & 0 \end{bmatrix}$

Problems 5 and 6 refer to the following matrices. Let $A = \begin{bmatrix} 2 & -1 & 0 \\ 5 & -3 & 2 \end{bmatrix}$,

$$B = \begin{bmatrix} 1 & 4 & 1 \\ -2 & 0 & -1 \end{bmatrix}, \text{ and } C = \begin{bmatrix} 1 & 3 \\ 2 & 0 \\ 5 & 1 \end{bmatrix}$$

5. (a) Find A + 3B, or, if A + 3B is not defined, write "A + 3B is not defined" in the answer box.

$$A + 3B = \begin{bmatrix} 2 & -1 & 0 \\ 5 & -3 & 2 \end{bmatrix} + 3 \begin{bmatrix} 1 & 4 & 1 \\ -2 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 5 & 11 & 3 \\ -1 & -3 & -1 \end{bmatrix}$$

Answer:
$$\begin{bmatrix} 5 & 11 & 3 \\ -1 & -3 & -1 \end{bmatrix}$$

(b) Find A + 3C, or, if A + 3C is not defined, write "A + 3C is not defined" in the answer box.

Since A is a 2×3 matrix and C is a 3×2 matrix, A+3C is not defined.

Answer:

A + 3C is not defined.

6. (a) Find AB, or, if AB is not defined, write "AB is not defined" in the answer box.

Since A is a 2×3 matrix and B is a 2×3 matrix, AB is not defined.

Answer:

AB is not defined.

(b) Find AC, or, if AC is not defined, write "AC is not defined" in the answer box.

$$AC = \begin{bmatrix} 2 & -1 & 0 \\ 5 & -3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 0 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} 2(1) + (-1)(2) + 0(5) & 2(3) + (-1)(0) + 0(1) \\ 5(1) + (-3)(2) + 2(5) & 5(3) + (-3)(0) + 2(1) \end{bmatrix} = \begin{bmatrix} 0 & 6 \\ 9 & 17 \end{bmatrix}.$$

7. Let $A = \begin{bmatrix} 3 & 0 & -5 \\ 2 & 2 & 4 \\ 1 & 6 & -3 \end{bmatrix}$. Find a symmetric matrix B and a skew-

symmetric matrix C such that A = B + C.

Let
$$B = (\frac{1}{2})(A + A^{T}) = (\frac{1}{2})\left(\begin{bmatrix} 3 & 0 & -5\\ 2 & 2 & 4\\ 1 & 6 & -3 \end{bmatrix} + \begin{bmatrix} 3 & 2 & 1\\ 0 & 2 & 6\\ -5 & 4 & -3 \end{bmatrix}\right) = \begin{bmatrix} 3 & 1 & -2\\ 1 & 2 & 5\\ -2 & 5 & -3 \end{bmatrix}$$

and let $C = (\frac{1}{2})(A - A^{T}) = (\frac{1}{2})\left(\begin{bmatrix} 3 & 0 & -5\\ 2 & 2 & 4\\ 1 & 6 & -3 \end{bmatrix} - \begin{bmatrix} 3 & 2 & 1\\ 0 & 2 & 6\\ -5 & 4 & -3 \end{bmatrix}\right) = \begin{bmatrix} 0 & -1 & -3\\ 1 & 0 & -1\\ 3 & 1 & 0 \end{bmatrix}.$
$$B = \begin{bmatrix} 3 & 1 & -2\\ 1 & 2 & 5\\ -2 & 5 & -3 \end{bmatrix}$$
$$C = \begin{bmatrix} 0 & -1 & -3\\ 1 & 0 & -1\\ 3 & 1 & 0 \end{bmatrix}$$

8. Determine whether the matrix $A = \begin{bmatrix} 3 & 6 & 0 \\ 2 & 0 & -4 \\ 1 & 1 & 0 \end{bmatrix}$ is invertible, and if it is, find A^{-1} .

We row-reduce the matrix $\boldsymbol{A}|\boldsymbol{I}\,.$

$$\begin{bmatrix} 3 & 6 & 0 & | & 1 & 0 & 0 \\ 2 & 0 & -4 & | & 0 & 1 & 0 \\ 1 & 1 & 0 & | & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & | & \frac{1}{3} & 0 & 0 \\ 2 & 0 & -4 & | & 0 & 1 & 0 \\ 1 & 1 & 0 & | & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & | & \frac{1}{3} & 0 & 0 \\ 0 & -4 & -4 & | & -\frac{2}{3} & 1 & 0 \\ 0 & -1 & 0 & | & -\frac{1}{3} & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & | & \frac{1}{3} & 0 & 0 \\ 0 & 1 & 1 & | & \frac{1}{6} & -\frac{1}{4} & 0 \\ 0 & -1 & 0 & | & -\frac{1}{3} & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & -\frac{1}{3} & 0 & 2 \\ 0 & 1 & 0 & | & -\frac{1}{3} & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & -\frac{1}{3} & 0 & 2 \\ 0 & 1 & 0 & | & \frac{1}{3} & 0 & -1 \\ 0 & 0 & 1 & | & -\frac{1}{6} & -\frac{1}{4} & 1 \end{bmatrix}$$

Therefore, A is invertible and $A^{-1} = \begin{bmatrix} -\frac{1}{3} & 0 & 2 \\ \frac{1}{3} & 0 & -1 \\ -\frac{1}{6} & -\frac{1}{4} & 1 \end{bmatrix}.$

9. Suppose that A is a 4 × 4 matrix such that $A^{-1} = \begin{bmatrix} 1 & -1 & 3 & 0 \\ 2 & 0 & 1 & 1 \\ 1 & 1 & 2 & 3 \\ 0 & 1 & 5 & -2 \end{bmatrix}$. Solve the system of equations $A\vec{x} = \begin{bmatrix} 4 \\ 2 \\ 5 \\ 0 \end{bmatrix}$, where $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$.

Multiplying both sides of the equation $A\vec{x} = \begin{bmatrix} 4\\2\\5\\0 \end{bmatrix}$ by A^{-1} gives $\vec{x} = I\vec{x} = A^{-1}A\vec{x} = A^{-1}\begin{bmatrix} 4\\2\\5\\0 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 3 & 0\\2 & 0 & 1 & 1\\1 & 1 & 2 & 3\\0 & 1 & 5 & -2 \end{bmatrix} \begin{bmatrix} 4\\2\\5\\0 \end{bmatrix} = \begin{bmatrix} 17\\13\\16\\27 \end{bmatrix}.$ Therefore, $x_1 = 17$, $x_2 = 13$, $x_3 = 16$, and $x_4 = 27$.

$x_1 = 17$ $x_2 = 13$ $x_3 =$	16	$x_4 = -$	27
-------------------------------	----	-----------	----

10. Suppose that A is a 3×3 matrix such that $A^{-1} = \begin{bmatrix} 2 & -1 & 0 \\ 3 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix}$, and $B = \begin{bmatrix} 4 & 1 & 1 \\ 2 & 2 & 2 \\ 0 & -1 & 1 \end{bmatrix}$. Find $(AB^{-1})^{-1}$. $(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1} = \begin{bmatrix} 4 & 1 & 1 \\ 2 & 2 & 2 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 0 \\ 3 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 11 & -3 & 5 \\ 10 & 0 & 10 \\ -3 & 1 & 1 \end{bmatrix}$.

Answer:	[11	-3	5
	10	0	10
	-3	1	1
	-		-