Fall, 2011
Exam 1

1. Find the augmented matrix for the system

$$
\left\{\begin{array}{c}
3 x_{1}+2 x_{2}=7 \\
x_{1}-x_{2}+4 x_{3}=5 .
\end{array}\right.
$$

Augmented matrix:

$$
\left[\begin{array}{rrr|r}
3 & 2 & 0 & 7 \\
1 & -1 & 4 & 5
\end{array}\right]
$$

2. Find a matrix A and a vector \vec{b} such that the system

$$
\left\{\begin{aligned}
x_{1}-5 x_{2}+x_{3} & =1 \\
2 x_{1}+3 x_{2}+x_{3} & =2 .
\end{aligned}\right.
$$

is the same as the equation $A \vec{x}=\vec{b}$.

$$
A=\left[\begin{array}{ccc}
1 & -5 & 1 \\
2 & 3 & 1
\end{array}\right] \quad \vec{b}=\quad\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

3. Let $A=\left[\begin{array}{rrr}2 & 4 & -8 \\ 0 & 4 & 12 \\ 1 & 2 & -4\end{array}\right]$. Find the row-reduced echelon form of A.

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
2 & 4 & -8 \\
0 & 4 & 12 \\
1 & 2 & -4
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 2 & -4 \\
0 & 4 & 12 \\
2 & 4 & -8
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 2 & -4 \\
0 & 4 & 12 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 2 & -4 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right] \sim} \\
& {\left[\begin{array}{rrr}
1 & 0 & -10 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right] .}
\end{aligned}
$$

Answer:

$$
\left[\begin{array}{rrr}
1 & 0 & -10 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right]
$$

4. Use the augmented matrix to solve the following system of linear equations, or, if the system is inconsistent, write "Inconsistent" in the answer box.
$\left\{\begin{aligned} 3 x_{1}+2 x_{2} & =4 . \\ x_{1}-x_{3} & =1 . \\ x_{2}+x_{3} & =0 .\end{aligned}\right.$
The augmented matrix is $\left[\begin{array}{rrr|r}3 & 2 & 0 & 4 \\ 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$. Row-reducing we get $\left[\begin{array}{rrr|r}3 & 2 & 0 & 4 \\ 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 0\end{array}\right] \sim\left[\begin{array}{rrr|r}1 & 0 & -1 & 1 \\ 3 & 2 & 0 & 4 \\ 0 & 1 & 1 & 0\end{array}\right] \sim\left[\begin{array}{rrr|r}1 & 0 & -1 & 1 \\ 0 & 2 & 3 & 1 \\ 0 & 1 & 1 & 0\end{array}\right] \sim\left[\begin{array}{rrr|r}1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 2 & 3 & 1\end{array}\right] \sim$
$\left[\begin{array}{rrrr|r}1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right] \sim\left[\begin{array}{rrr|r}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1\end{array}\right]$. Therefore, $x_{1}=2, x_{2}=-1, x_{3}=1$.

$$
\begin{aligned}
& \text { Answer: } \\
& \qquad x_{1}=2, x_{2}=-1, x_{3}=1
\end{aligned}
$$

5. Determine whether or not the vector $\vec{w}=\left[\begin{array}{l}5 \\ 0 \\ 2\end{array}\right]$ is a linear combination of the vectors $\vec{v}_{1}=\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, and $\vec{v}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. If \vec{w} is a linear combination of \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3}, show how to write \vec{w} as a linear combination of the other vectors; otherwise, write in the answer box " \vec{w} is not a linear combination of \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3}."

We want to see if there are scalars x_{1}, x_{2}, and x_{3} such that $x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+x_{3} \vec{v}_{3}=\vec{w}$. Therefore, we want to see if the following system has a solution: $\left\{\begin{array}{ll}2 x_{1} & +x_{3}=5 . \\ 2 x_{1}+x_{2} & +x_{3}=0 . \\ x_{1} & +x_{3}=2 .\end{array}\right.$ Row-reducing the augmented matrix gives $\left[\begin{array}{lll|l}2 & 0 & 1 & 5 \\ 2 & 1 & 1 & 0 \\ 1 & 0 & 1 & 2\end{array}\right] \sim\left[\begin{array}{lll|l}1 & 0 & 1 & 2 \\ 2 & 1 & 1 & 0 \\ 2 & 0 & 1 & 5\end{array}\right] \sim$ $\left[\begin{array}{rrr|r}1 & 0 & 1 & 2 \\ 0 & 1 & -1 & -4 \\ 0 & 0 & -1 & 1\end{array}\right] \sim\left[\begin{array}{rrr|r}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & -1\end{array}\right]$. Therefore, we can take $x_{1}=$ $3, x_{2}=-5$, and $x_{3}=-1$, so $\vec{w}=3 \vec{v}_{1}-5 \vec{v}_{2}-\vec{v}_{3}$.

$$
\begin{aligned}
& \text { Answer: } \\
& \quad \vec{w}=3 \vec{v}_{1}-5 \vec{v}_{2}-\vec{v}_{3}
\end{aligned}
$$

6. Determine whether or not the vector $\vec{w}=\left[\begin{array}{l}5 \\ 0 \\ 2\end{array}\right]$ is a linear combination of the vectors $\vec{v}_{1}=\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, and $\vec{v}_{3}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$. If \vec{w} is a linear combination of \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3}, show how to write \vec{w} as a linear combination of the other vectors; otherwise, write in the answer box " \vec{w} is not a linear combination of \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3}."

We want to see if there are scalars x_{1}, x_{2}, and x_{3} such that $x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+x_{3} \vec{v}_{3}=\vec{w}$. Therefore, we want to see if the following system has a solution: $\left\{\begin{array}{c}2 x_{1}+x_{3}=5 . \\ 2 x_{1}+x_{2} \\ x_{1} \\ \\ =x_{3}\end{array}=2.0\right.$ Row-reducing the augmented matrix gives $\left[\begin{array}{ccc|c}2 & 0 & 2 & 5 \\ 2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 2\end{array}\right] \sim\left[\begin{array}{lll|l}1 & 0 & 1 & 2 \\ 2 & 1 & 0 & 0 \\ 2 & 0 & 2 & 5\end{array}\right] \sim$ $\left[\begin{array}{rrr|r}1 & 0 & 1 & 2 \\ 0 & 1 & -2 & -4 \\ 0 & 0 & 0 & 1\end{array}\right] \sim\left[\begin{array}{rrr|r}1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$. Since the last row corresponds to the equation $0=1$, the system has no solution, so \vec{w} is not a linear combination of \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3}..
Answer:
\vec{w} is not a linear combination
of \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3}.
7. Let $A=\left[\begin{array}{rrr}1 & 2 & -1 \\ 0 & 3 & -2 \\ 4 & 5 & 0 \\ 1 & 3 & 5\end{array}\right]$ and let $\vec{v}=\left[\begin{array}{l}2 \\ 2 \\ 6\end{array}\right]$. Find $A \vec{v}$ if it is defined, or, if it is not defined, write " $A \vec{v}$ is not defined" in the answer box.

$$
A \vec{v}=\left[\begin{array}{rrr}
1 & 2 & -1 \\
0 & 3 & -2 \\
4 & 5 & 0 \\
1 & 3 & 5
\end{array}\right]\left[\begin{array}{l}
2 \\
2 \\
6
\end{array}\right]=\left[\begin{array}{c}
(1)(2)+(2)(2)+(-1)(6) \\
(0)(2)+(3)(2)+(-2)(6) \\
(4)(2)+(5)(2)+(0)(6) \\
(1)(2)+(3)(2)+(5)(6)
\end{array}\right]=\left[\begin{array}{c}
0 \\
-6 \\
18 \\
38
\end{array}\right] .
$$

Answer: $\left[\begin{array}{c}0 \\ -6 \\ 18 \\ 38\end{array}\right]$
8. Determine whether or not the columns of the matrix $\left[\begin{array}{rrr}1 & 2 & 4 \\ 1 & 0 & 2 \\ -1 & 2 & 0\end{array}\right]$ span \mathbb{R}^{3}. Be sure that your work makes clear how you came up with your answer.

We row-reduce the given matrix.
$\left[\begin{array}{rrr}1 & 2 & 4 \\ 1 & 0 & 2 \\ -1 & 2 & 0\end{array}\right] \sim\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -2 & -2 \\ 0 & 4 & 4\end{array}\right] \sim\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 1 & 1 \\ 0 & 4 & 4\end{array}\right] \sim\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$.
Since the row-reduced echelon form of the matrix has a row of 0 s , the columns do not span \mathbb{R}^{3}.The columns span \mathbb{R}^{3}.
\boxtimes The columns do not span \mathbb{R}^{3}.
9. Let $A=\left[\begin{array}{rrr}3 & 2 & -1 \\ 1 & 0 & 2 \\ 1 & 2 & -5\end{array}\right]$. Determine whether or not the homogeneous system $A \vec{x}=\overrightarrow{0}$ has a non-trivial solution. Be sure that your work makes clear how you came up with your answer.

Row-reducing A we get $\left[\begin{array}{rrr}3 & 2 & -1 \\ 1 & 0 & 2 \\ 1 & 2 & -5\end{array}\right] \sim\left[\begin{array}{rrr}1 & 0 & 2 \\ 3 & 2 & -1 \\ 1 & 2 & -5\end{array}\right] \sim\left[\begin{array}{rrr}1 & 0 & 2 \\ 0 & 2 & -7 \\ 0 & 2 & -7\end{array}\right] \sim$
$\left[\begin{array}{rrr}1 & 0 & 2 \\ 0 & 1 & \frac{-7}{2} \\ 0 & 0 & 0\end{array}\right]$.
Since the row-reduced echelon form of A has at least one row containing at least two non-zero entries, the system has non-trivial solutions. Specifically, any vector of the form $\left[\begin{array}{c}-2 t \\ \frac{7 t}{2} \\ t\end{array}\right]$ is a solution.
$\boxed{\text { The system has non-trivial solutions. }}$The only solution is the trivial solution.
10. Determine whether or not the vectors $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$, and $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ are linearly independent. Be sure that your work makes clear how you came up with your answer.

Let A be the matrix whose columns are the three given vectors, that is, $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$. Row-reducing, we get
$\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 0 & 1 \\ 0 & 1 & 1\end{array}\right] \sim\left[\begin{array}{rrr}1 & 2 & 1 \\ 0 & -4 & -1 \\ 0 & 1 & 1\end{array}\right] \sim\left[\begin{array}{rrr}1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & -4 & -1\end{array}\right] \sim\left[\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 3\end{array}\right] \sim$ $\left[\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right] \sim\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Since the homogeneous system $A \vec{x}=$ $\overrightarrow{0}$ has only the trivial solution, the vectors are linearly independent.
$\boxed{\text { The vectors are linearly independent. }}$The vectors are not linearly independent.

