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1 Introduction

The main purpose of this manuscript is to show that the integral full orbifold K -theory of
several classes of orbifolds X arising as abelian symplectic quotients are free of additive tor-
sion. An important subclass of symplectic quotients to which our results apply are orbifold
toric varieties, of which weighted projective spaces are themselves a special case.

Orbifold toric varieties are global quotients of a manifold by a torus action, and are there-
fore a natural starting point for a study of orbifolds. Many conjectures on orbifolds and
orbifold invariants in active areas of research (algebraic geometry, equivariant topology, the
theory of mirror symmetry, to name a few) have been first tested in the realm of orbifold toric
varieties. More specifically, there has been historically [2–4,29,34] and also quite recently a
burst of interest in weighted projective spaces (and their integral invariants); for more recent
work, see for instance [7,9,12,17,26,37].

We note that the application of our main result to orbifold toric varieties is in the spirit of the
previous work in the study of (both ordinary and orbifold) topological invariants of weighted
projective spaces [3,15,29]. Moreover, recent work of Hua [27] uses algebro-geometric meth-
ods to show that Grothendieck groups of a large class of toric Deligne-Mumford stacks are
free of additive torsion. This part of our results (Theorem 1.2 below) can be viewed as a
full orbifold K -theory analogue of his results in the topological category, proved via sym-
plectic geometric methods. However, the scope of our results is more general. While the
above-mentioned work all deal with certain cases of orbifold toric varieties, the techniques
in this manuscript, which build upon the symplectic and equivariant Morse theoretic methods
developed in [15], allow us to prove that the full orbifold K -theory is free of additive torsion
in more general settings. In particular, we discuss non-toric examples in the later sections.

Let T denote a compact connected abelian Lie group, i.e., a torus. Suppose (M, ω,") is
a Hamiltonian T -space, with moment map " : M → t∗. Furthermore, let β : H ↪→ T be
a closed Lie subgroup (i.e. a subtorus). Let "H : M → h∗ be the induced H -moment map
obtained as the composition of " : M → t∗ with the linear projection1 β∗ : t∗ → h∗. Sup-
pose η ∈ h∗ is a regular value of "H , and denote by Z := "−1

H (η) ⊆ M the corresponding
level set. Since η is a regular value, Z is a smooth submanifold of M , and H acts locally
freely on Z . Let

X := [M//η H ] = [Z/H ] (1.1)

denote the quotient stack associated to the locally free H -action on Z . This is an orbifold,
also referred to as a Deligne-Mumford stack in the differentiable category. Let ξ ∈ t and
recall that "ξ := 〈", ξ〉 : M → R denotes the corresponding component of the moment
map.

The full orbifold K -theory Korb(X) over Q was introduced by Jarvis, Kaufman and Kimura
in [28]. In the case that X is formed as an abelian quotient of a manifold Z by a locally free
action of a torus T , the authors of this manuscript and Kimura gave an integral lift Korb(X)

in terms of the inertial K -theory N KT (Z) in [15]. This satisfies Korb(X) ⊗ Q ∼= Korb(X) as
rings [8]. Specifically, the full orbifold K -theory may be described additively as a module
over KT (pt) by

Korb(X) =
⊕

t∈T

KT (Zt ).

1 By slight abuse of notation we use β to also denote the linear map h → t obtained as the derivative of the
inclusion map β : H ↪→ T .
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This differs from previous definitions of “orbifold K -theory,” e.g. that of Adem and Ruan [1].
We refer the reader to the introduction of [15] for a more detailed discussion of other notions
of orbifold K -theory in the literature. In this manuscript, for G a compact Lie group and
Y a G-space, we let KG(Y ) = K 0

G(Y ) denote the Atiyah-Segal topological G-equivariant
K -theory [35]. This is built from G-equivariant vector bundles when Y is a compact G-space,
and G-equivariant maps [Y, Fred(HG)]G if Y is noncompact (here HG is a Hilbert space
that contains infinitely many copies of every irreducible representation of G, see e.g. [6]).
We may now state our main theorem about the structure of Korb(X).

Theorem 1.1 Let (M, ω,") be a Hamiltonian T -space, β : H ↪→ T a connected subtorus
with induced moment map "H := β∗ ◦ " : M → h∗. Suppose η ∈ h∗ is a regular value of
"H , let Z := "−1

H (η) denote its level set, and X := [Z/H ] the associated quotient orbifold
stack. Suppose there exists ξ ∈ t such that the following conditions hold:

(1) H ⊆ exp(tξ), the closure of the one-parameter subgroup generated by ξ in T ;
(2) f := "ξ |Z is proper and bounded below;
(3) for each t ∈ H, π0(Crit( f |Zt )) is finite;
(4) for each t ∈ H and each connected component C of Crit( f |Zt ),

(a) K 0
H (C) contains no additive torsion, and

(b) K 1
H (C) = 0.

Then Korb(X) contains no additive torsion.

A direct consequence is that when the components of the critical set are isolated H -orbits,
Korb(X) contains no additive torsion (see Corollary 3.2). We use this corollary to prove the
following.

Theorem 1.2 Let X be a symplectic toric orbifold obtained as a symplectic quotient of a
linear H-action on a complex affine space, where H is a connected compact torus. Then
Korb(X) is free of additive torsion.

As mentioned above, this corollary is similar in spirit to Kawasaki’s result that the integral
cohomology of (the underlying topological spaces of) weighted projective spaces are free of
additive torsion. Kawasaki showed in [29] that the integral cohomology groups of (the coarse
moduli space of) a weighted projective space agree with those of a smooth projective space,
but the ring structure differs, with structure constants that depend on the weights. Hence we
expect that the richness of the data in Korb(X) for toric orbifolds is also contained not in
additive torsion but rather in the multiplicative structure constants of the ring. We leave this
for future work.

The main theorem may be applied in situations other than that of the Delzant construction
of orbifold toric varieties; the content of the last two sections of this manuscript is an explora-
tion of other situations in equivariant symplectic geometry in which the hypotheses also hold.
First, we observe in Sect. 5 that the hypotheses above on the relevant connected components C
hold for S1-symplectic quotients of Hamiltonian T -spaces which are GKM, under a technical
condition on the choice of subgroup S1 ⊆ T . Spaces with T -action which satisfy the so-called
“GKM conditions,” introduced in the influential work of Goresky-Kottwitz-Macpherson [16],
are extensively studied in equivariant algebraic geometry, symplectic geometry, and geomet-
ric representation theory, and encompass a wide array of examples. We use a corollary of
the main theorem to prove Theorem 5.1, which states that the full orbifold K -theory of the
quotient of a GKM space by certain circle subgroups is free of additive torsion. Secondly, we
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explore in Sect. 6 how the essential properties of the Delzant construction (which allow us
to prove Theorem 1.2) may in fact be placed in a more general framework of phenomena in
torus-equivariant symplectic geometry which may be informally described as ‘taking place
within a T -equivariant Darboux neighborhood of an isolated T -fixed point.’ The precise
statements are given in detail in Sect. 6, where we introduce the notion of a closed H -invari-
ant subset of a Hamiltonian T -space being semilocally Delzant (with respect to H ), and
make some initial remarks on situations in which this notion applies. One class of spaces
to which our definitions apply are the generalized flag varieties G/B and G/P , which may
be covered by Darboux neighborhoods given by the Weyl translates of the open Bruhat cell.
Furthermore, the natural T -action on generalized flag varieties (that of the maximal torus T
in G) is also well-known to be GKM. In both Sects. 5 and 6, we illustrate our results using
examples of this type.

2 A local normal form and Morse-Bott theory on level sets of moment maps

We begin with our main technical lemma (Lemma 2.2) regarding the Morse-Bott theory of
moment maps in equivariant symplectic geometry. The techniques used to prove this result
are fairly standard in the field, but we have not seen this particular formulation in the lit-
erature. It is well-known that components of moment maps "ξ = 〈", ξ〉 : M → R are
Morse-Bott functions on a Hamiltonian T -space M , for any ξ ∈ t. In addition, these com-
ponents induce Morse-Bott functions on smooth symplectic quotients M//η H , where H is a
closed Lie subgroup of T , and η is a regular value of the H -moment map "H [33].

What seems heretofore unnoticed2 is that a component"ξ of the T -moment map, restricted
to the level set "−1

H (η) itself, is also a Morse-Bott function when H is contained in the clo-
sure of the subgroup generated by ξ . This may be deduced from the following local normal
form result of Hilgert, Neeb, and Plank [25, Lemmata 2.1 and 2.2], which builds on work of
Guillemin and Sternberg [19, Chapter II]. Note that generic ξ satisfy this condition.

Proposition 2.1 (Hilgert, Neeb, Plank) Let (M, ω,") be a Hamiltonian T -space with
moment map " : M → t∗. Let p ∈ M. Then there exists a T -invariant neighborhood
U ⊆ M of the orbit T · p ⊆ M, a subtorus T1 ⊆ T and a symplectic vector space V such
that:

1. There is a decomposition T = T0×T1, where T0 = Stab(p)0 is the connected component
of the identity in the stabilizer group of p in T .

2. There is a T -equivariant symplectic open covering from an open subset U ′ of T1 × t∗1 ×V
onto U , where the T -action on T1 × t∗1 × V is given by

(T0 × T1) × (T1 × t∗1 × V ) → (T1 × t∗1 × V )
(2.1)

((t0, t1), (g, γ, v)) -→ (t1 · g, γ, ρ(t0)v),

where ρ : T0 → Sp(V ) is a linear symplectic representation.
3. There exists a complex structure I on V such that 〈v,w〉 := ωV (Iv,w) defines a positive

definite scalar product on V . Let V = ⊕
α Vα be the decomposition of V into isotypic

components corresponding to weights α ∈ t∗0. With respect to these local coordinates,

2 However, a result of this nature appears to be implicit in the work of Lerman and Tolman on the classification
of orbifold toric varieties [32], and even earlier in work of Marsden and Weinstein [33] and Atiyah [5].
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the moment map "′ on U ′ ⊆ T1 × t∗1 × V is given by

"′ : U ′ ⊆ T1 × t∗1 × V → t∗ ∼= t∗0 ⊕ t∗1

(g, η, v) -→ "′(1, 0, 0) +
(

1
2

∑
||vα||2α, η

)
. (2.2)

For any ξ ∈ t, let T ξ := exp(tξ) denote the closure of the one-parameter subgroup
generated by ξ ∈ t. Using the notation set in the Introduction, we now have the following.

Lemma 2.2 Let (M, ω,") be a Hamiltonian T -space, and H ⊆ T a subtorus. Let Z :=
"−1

H (η) be a level set of the moment map for the H action at a regular value. The function

f := "ξ |Z : Z → R

is a Morse-Bott function on Z for every ξ ∈ t such that H ⊆ T ξ .

Proof We show that for any point p ∈ Z such that d f p = 0,

1. the connected component of Crit( f ) containing p is a submanifold, where Crit( f ) is the
critical set of f , and

2. the Hessian of f at p is non-degenerate in the directions normal to the connected com-
ponent of Crit( f ) containing p.

Since the conditions to be checked are purely local, we may argue separately for each point
p in the critical set Crit( f ).

For the purposes of this argument, we may assume without loss of generality that the
T -equivariant symplectic open cover U ′ → U of Proposition 2.1 is in fact a T -equivariant
symplectomorphism. The only part of this claim requiring justification is the relationship,
in general, between the moment maps "1 and "2 associated to Hamiltonian T -spaces
(M1, ω1,"1) and (M2, ω2,"2) where there exists a T -equivariant symplectic open cover
π : M1 → M2. Since by assumption π∗

1 ω2 = ω1 and π∗(ξ
+
M1

) = ξ
+
M2

for all ξ ∈ t where

ξ
+
Mi

denotes the infinitesmal vector fields generated by ξ on the Mi , it follows immediately
from Hamilton’s equations that π∗"2 may be chosen as a moment map "1 for the T -action
on M1. In particular, since π is an open covering, the local argument for "1 in a small enough
neighborhood of a point p in M1 translates directly to an analogous argument in M2 for "2.
Therefore we henceforth assume that (2.1) and (2.2) locally represent a neighborhood of p,
and " near p ∈ Z , respectively.

We continue with a characterization of the critical points Crit( f ) ⊆ Z . Recall T ξ :=
exp(tξ). Let StabT ξ (p) denote the stabilizer group in T ξ of p and codim(H, T ξ ) the codi-
mension of the subgroup H in T ξ . Suppose p ∈ Z . We claim that p ∈ Crit( f ) if and only if
dim(StabT ξ (p)) = codim(H, T ξ )). Note that p ∈ Z immediately implies dim StabT ξ (p) ≤
codim(H, T ξ )), since H acts locally freely on Z . By definition, a point p ∈ Z is critical for
f if and only if

d f p(v) = 〈d"p(v), ξ〉 = ωp(ξ
+
p, v) = 0, ∀v ∈ Tp Z ,

where Tp Z denotes the tangent space at p to Z . Note also that the tangent space

Tp Z = Tp"
−1
H (η) = (Tp(H · p))ωp ⊆ Tp M.

Thus p ∈ Z is critical for f if and only if

ξ+
p ∈ ((Tp(H · p))ωp )ωp = Tp(H · p).
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Since ξ generates T ξ , it follows that p ∈ Crit( f ) if and only if

Tp(T ξ · p) ⊆ Tp(H · p). (2.3)

Hence dim StabT ξ (p) ≥ codim(H, T ξ ). Thus p ∈ Z is critical for f if and only if
dim StabT ξ (p) = codim(H, T ξ ).

The above argument shows that for any ξ ∈ t with H ⊆ T ξ , the critical set Crit( f )

is precisely the union of sets of the form Z (T ′) for subtori T ′ of T ξ such that dim(T ′) =
codim(H, T ξ ), where

Z (T ′) := {p ∈ Z : StabT ξ (p) = T ′}

consists of the points whose stabilizer group in T ξ is precisely T ′. Since H acts locally
freely on Z , a subtorus T ′ of T ξ as above has maximal dimension among subtori of T ξ with
nonempty Z (T ′). Now let p ∈ Crit( f ). Consider local coordinates near p as in (2.1), with
" near p described by (2.2). Write ξ = ξ0 + ξ1 for ξ0 ∈ t0, ξ1 ∈ t1. We first determine the
intersection of Crit( f ) with this coordinate chart, in terms of these local coordinates. From
the description of the T = T0 × T1-action in (2.1), and from the fact observed above that
p is in Crit( f ) precisely when its stabilizer subgroup is of maximal possible dimension, it
follows that Crit( f ) is the set of points of the form {(g, γ, v) : v ∈ V0} where V0 is the
subspace of V on which T0 acts trivially. In particular, Crit( f ) is a submanifold of Z near p.

Finally, we show that the Hessian of f near p is nondegenerate on those tangent directions
in Tp Z corresponding to tangent vectors of the form {(0, 0,

∑
α 2=0 vα) : vα ∈ Vα, α 2= 0}

in the chosen local coordinates. Recall that for tangent vectors v,w ∈ Tp Z , the Hessian
Hess( f )p(v,w) is computed by LṽLw̃( f ) where ṽ, w̃ are arbitrary extensions of v,w to
vector fields in a neighborhood of p in Z (and LX denotes a Lie derivative along a vec-
tor field X ). In the local coordinates of Proposition 2.1, any two vectors of the form v =(
0, 0,

∑
α 2=0 vα

)
, w =

(
0, 0,

∑
α 2=0 wα

)
may be extended to a neighborhood as the con-

stant vector field ṽ ≡
(
0, 0,

∑
α 2=0 vα

)
, w̃ ≡

(
0, 0,

∑
α 2=0 wα

)
. We then observe that the

description of " in (2.2) implies that for such a w̃,

Lw̃( f ) = d f (w̃) = d("ξ0 |Z )(w̃),

since w̃ contains no component in t∗1. It then suffices to show that the Hessian of the
t∗0-component of " is nondegenerate in the directions ⊕α 2=0Vα . From the local normal form
of " in (2.2), this is just a standard quadratic moment map for a linear symplectic action of
a torus on a symplectic vector space, so this non-degeneracy is classical (see e.g. [5]). 45

3 The proof and a corollary of the main theorem

We now prove the main theorem. The argument uses equivariant Morse theory of the moment
map, most of which is standard (see, for example, [24,30,31,36]). The novel feature here
involves the use of a component of the moment map on a level set of a moment map for a
partial torus action. We use the same notation as in the introduction.

Proof of Theorem 1.1 We first note that since the statement of the theorem involves only the
additive structure of Korb, we need only recall the definition (and computation) of Korb(X)

as an additive group. In [15] (cf. also [8]), the integral full orbifold K -theory of orbifolds
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X arising as abelian symplectic quotients (by a torus H ) is described via an isomorphism
[15, Remark 2.5]

Korb(X) ∼= N K H (Z) :=
⊕

t∈H

K H
(
Zt)

where the middle term is the H -equivariant integral inertial K -theory of the manifold
Z := ("H )−1(η), defined additively as the direct sum above. We now show that the right-
hand side is torsion free.

Note that Zt = ("H |Mt )−1 (η), so it is itself a level set for the H -moment map on Mt

for each t ∈ T . Suppose ξ ∈ t satisfies the hypotheses of the theorem, and let f = "ξ |Z .
Since f is proper and bounded below, then clearly f |Zt is also proper and bounded below. It
is now immediate that ξ satisfies conditions (1)–(4) for the Hamiltonian T -space Mt . Thus
without loss of generality, we need only check that K H (Z) is torsion-free; all other cases
follow similarly.

By Lemma 2.2, f is a Morse-Bott function. Denote the connected components of Crit( f )

by {C j },j=1, where , is finite by condition (3) and assume without loss of generality that
f (Ci ) < f (C j ) if i < j . Because f is bounded below and proper, all components are closed
and compact, and there exists a minimal component, which we denote C0.

Assume Z is nonempty. We build the equivariant K -theory of Z inductively by studying
the critical sets, beginning with the base case. By assumption, K 0

H (C0) has no additive torsion
and K 1

H (C0) = 0. For small enough ε > 0, consider the submanifolds

Z+
j = f −1((−∞, f (C j ) + ε)), Z−

j = f −1((−∞, f (C j ) − ε)),

where ε is chosen so that C j is the only critical component contained in Z+
j \Z−

j . Using the
2-periodicity of (equivariant) K -theory, there is a periodic long exact sequence

K 0
H (Z+

j ) !! K 0
H (Z−

j )

""!!!!!!!!!!

K 0
H (Z+

j , Z−
j )

##""""""""""
K 1

H (Z+
j , Z−

j )

$$""""""""""

K 1
H (Z−

j )

%%!!!!!!!!!!

K 1
H (Z+

j )&&

(3.1)

in equivariant K -theory for the pair (Z+
j , Z−

j ). Choose an H -invariant metric on Z , and iden-
tify K ∗

H (Z+
j , Z−

j ) with K ∗
H (D(ν−

j ), S(ν−
j )), where D(ν−

j ), S(ν−
j ) are the disc and sphere

bundles, respectively, of the negative normal bundle to C j with respect to f . The equivari-
ant Thom isomorphism also says that K ∗

H (D(ν−
j ), S(ν−

j )) ∼= K ∗
H (C j ). There is no degree

shift since the (real) dimension of the negative normal bundle is even (as can be seen from
Proposition 2.1) and K -theory is 2-periodic. By assumption, K 1

H (C j ) = 0, and by the induc-
tive assumption we have K 1

H (Z−
j ) = 0. Hence we may immediately conclude from (3.1)

that K 1
H (Z+

j ) = 0 and that there is a short exact sequence

0 → K 0
H (Z+

j , Z−
j ) → K 0

H (Z+
j ) → K 0

H (Z−
j ) → 0. (3.2)

By induction, K 0
H (Z−

j ) has no additive torsion, and by assumption,

K 0
H (Z+

j , Z−
j ) ∼= K 0

H (D(ν−
j ), S(ν−

j )) ∼= K 0
H (C j )
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does not either. We conclude that K 0
H (Z+

j ) is also free of additive torsion. Hence by induc-
tion we conclude that K 0

H (Z+
, ) is free of additive torsion. Since C, is the maximal critical

component, there are no higher critical sets, so the negative gradient flow with respect to f
yields an H -equivariant deformation retraction from Z to Z+

, . Hence K H (Z) ∼= K H (Z+
, ),

and in particular we may conclude that K 0
H (Z) is free of additive torsion, as desired. 45

Remark 3.1 In the course of the proof, we have also shown that K 1
H (Zt ) = 0 for all t ∈ H .

In the inductive arguments given in Sects. 4 and 5, we will need this additional fact to obtain
Theorems 4.1 and 5.1.

We now turn to the first application of Theorem 1.1, the case when the critical set consists
of isolated H -orbits.

Corollary 3.2 Let X = [Z/H ] be an orbifold constructed as in (1.1). As above, suppose
that there exists ξ ∈ t such that

• H ⊆ T ξ ,
• f := "ξ |Z is proper and bounded below, and
• for every t ∈ H, Crit ( f |Zt ) consists of finitely many isolated H-orbits.

Then Korb(X) contains no additive torsion. Furthermore, K 1
H (Zt ) = 0 for all t ∈ H.

Proof It suffices to check that the hypotheses of Theorem 1.1 are satisfied, and it is evident
that the only assumption needing comment is (4). Since each connected component C is an
isolated H -orbit, and by assumption H acts locally freely on Z , we have

K 0
H (C) ∼= K 0

H (H · p) ∼= K 0
H (H//),

where p ∈ C and / is the finite stabilizer subgroup StabT (p) in H . The H -equivariant
K -theory of a homogeneous space is the representation ring of the stabilizer of the identity
coset,

K 0
H (H//) ∼= K 0

/(pt) ∼= R(/),

which has no additive torsion. Moreover, K 1
H (H//) ∼= K 1

/(pt) = 0. Hence, assumptions
(4a) and (4b) hold, and we may apply the Main Theorem. The result follows. 45

This corollary provides the starting point for inductive arguments which show that the
integral full orbifold K -theory of an abelian symplectic quotient is torsion free.

Remark 3.3 It follows immediately from this proof that the integral full orbifold K -theory
Korb(X) of an orbifold X = [Z/H ] satisfying the hypotheses of the Main Theorem is addi-
tively the direct sum of representation rings R(/) for those subgroups / of H appearing as
stabilizer groups in the level set of the moment map Z = "−1

H (η). It would be interesting to
compare this description via representation rings to the computation given in [15] in terms
of the Kirwan surjectivity theorem in full orbifold K -theory.

4 Symplectic toric orbifolds

We now provide a first application of the Main Theorem and its corollary, namely: for a large
class of toric orbifolds, the integral full orbifold K -theory contains no additive torsion. In
the case of weighted projective spaces similar results were obtained by Kawasaki in ordinary
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integral cohomology in the 1970s [29], then in ordinary K -theory (using results of [29]) by
Al Amrani in [3]. More recently, Zheng Hua [27] has independently shown using algebro-
geometric methods that, when the generic point is stacky, the Grothendieck group K0(X0)

of a smooth complete toric Deligne-Mumford stack is a free Z-module. Here, 0 is a stacky
fan as defined in [10] and K0 is the algebraic K -theory defined via coherent sheaves. Since
it is straightforward to see from the definition (given below) of symplectic toric orbifolds X
that the twisted sectors arising in the computation of the full orbifold K -theory Korb(X) are
themselves stacks which are symplectic toric orbifolds, the substantive statement (which is
the topological K -theory analogue of Hua’s result) is that each twisted sector individually has
K -theory free of additive torsion. Hence Theorem 4.1 should be viewed as a straightforward
integral full orbifold K -theory analogue, in the topological category and for symplectic toric
orbifolds X, of Hua’s result [27]. However, our methods of proof, which use the equivariant
Morse theory of symplectic geometry developed in Sects.2 and 3, are significantly different
from those of [27].

We first establish notation for both the Delzant construction of toric varieties and the
statement of the theorem. In the smooth case, this construction may be found in [13] (for an
accessible account, see [11]). This construction is generalized to the orbifold case in [32].
Let T n = (S1)n be the standard compact n-torus, acting in the standard linear fashion on Cn

(via the embedding of T n into U (n, C) as diagonal matrices with unit complex entries). This
is a Hamiltonian T n-action on Cn with respect to the standard Kähler structure on Cn .

Let " : Cn → (tn)∗ denote a moment map for this action. For a connected closed subtorus
β : H ↪→ T n , let "H := β ◦ " : Cn → h∗ denote the induced moment map. For a regular
value η ∈ h∗ of "H , let Z := "−1

H (η) be its level set. By regularity of η, H acts locally
freely on Z . The symplectic toric orbifold specified by β : H ↪→ T n and η is then defined
by

X := Cn//η H = [Z/H ].
The procedure just recounted is often called the Delzant construction of the toric orbifold
X, although historically it was the underlying topological space of X that was studied, not the
associated stack.3 Symplectic toric orbifolds were classified in [32]; we consider only those
obtained by a quotient by a connected subtorus H . We will call an element ξ ∈ t of the Lie
algebra generic if its associated 1-parameter subgroup exp(tξ) in T is dense: in the notation
of Sect. 2, T ξ = T . Note that if there exists any ξ ∈ t such that "ξ |Z is proper and bounded
below, then there also exists a generic ξ ∈ t satisfying the same conditions.

Theorem 4.1 Let X = Cn//η H be a symplectic toric orbifold, where β : H ↪→ T a con-
nected closed subtorus of T and η ∈ h∗ a regular value. Let Z = "−1

H (η) denote the η-level
set of "H . Then Korb(X) has no additive torsion. Furthermore, K 1

H (Zt ) = 0 for all t ∈ H.

Proof Since the original T -action on Cn is a standard linear action by diagonal matrices, for
any t ∈ H, the fixed point set (Cn)t is a coordinate subspace, i.e. (Cn)t ∼= Cm ⊂ Cn , deter-
mined by the values of the T -weights on each coordinate line {(0, 0, . . . , z j , 0, . . . , 0)} ⊆ Cn .
It is immediate that (Cn)t is a linear symplectic subspace of Cn and that the restriction
"H |(Cn)t : (Cn)t → h∗ is a moment map for this action. Thus Zt is equal to

(
"H |(Cn)t

)−1
(η),

the level set of a moment map for a H -action on a possibly-smaller-dimensional vector space.

3 Indeed, the underlying topological space Z/H corresponding to the stack X is often also called the sym-
plectic quotient of Cn by H at the value η. In the current literature, there is an unfortunate ambiguity: the
“symplectic quotient” may refer to the stack or the underlying topological space.
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Choose a generic ξ ∈ t such that "ξ |Z is proper and bounded below. Such a ξ exists
because there are such components for " : Cn → t∗, and Z is a T -invariant closed subset
of Cn . Let f = "ξ |Z . In order to apply Corollary 3.2, we must check that for all t ∈ H, the
critical set Crit( f |Zt ) consists of finitely many isolated H -orbits. We first observe that since
(Cn)t ∼= Cm is itself a symplectic linear space equipped with a linear T -action, it suffices to
prove this statement for the special case t = id; the other cases follow similarly.

Let C be a connected component in Crit( f ) and p ∈ C . Since f is T -invariant, H · p ⊂ C .
Since C is compact and connected, it suffices to show that C consists of one orbit locally.
Recall from the proof of Lemma 2.2 that p ∈ Crit( f ) exactly if

dim(StabT (p)) = codim(H) = n − k.

Thus dim(StabT (p)) = n − k exactly if p = (z1, z2, . . . , zn) ∈ Cn has precisely n − k
coordinates equal to 0, i.e. p lies in a coordinate subspace of Cn isomorphic to Ck . Note
that H acts on Cn preserving this Ck , and the regularity assumption on η implies that the
restriction of "H to Ck is Q-linearly isomorphic to the standard moment map for the standard
H -action on Ck (up to a translation by a constant in h∗). In particular, this implies that the
condition p ∈ Z := "−1

H (η) for a regular value η uniquely determines the non-zero norms

of the coordinates ‖zi1‖2, ‖zi2‖2, . . . , ‖zik ‖2. Therefore, the only nearby points p′ ∈ Z with
dim(StabT (p′)) = n − k are those in the H orbit of p. We conclude that each connected
component C of Crit( f ) is a single H -orbit. Moreover, there are only finitely many critical
components because there are only finitely many k-dimensional coordinate subspaces of Cn .

The same argument for each (Cn)t and an application of Corollary 3.2 completes the
proof. 45

5 GKM spaces

Let (M, ω,") be a compact Hamiltonian T -space. Suppose in addition that the T -fixed
points are isolated, and that the set of points with codimension-1 stabilizer

M1 := {x ∈ M | codim(Stab(x)) = 1}
has real dimension dim(M1) ≤ 2. When these conditions are satisfied, we say that M is a
GKM space and that the T -action on M is GKM.4 It is also well-known in the theory of
GKM spaces (in the context of the study of Hamiltonian T -actions) that these conditions
imply that the equivariant 1-skeleton of M , i.e. the closure M1 = M1 ∪ MT , is a union of
symplectic 2-spheres S2. Moreover, each such 2-sphere is itself a Hamiltonian T -space; the
T -action on S2 is given by a nontrivial character T → S1 (equivalently, a nonzero weight
α ∈ t∗Z) where the S1 acts on S2 by rotation. Here the weight α is obtained from the linear
T -isotropy data at either of the two T -fixed points in S2. (For details see e.g. the expository
article [38].)

Hamiltonian T -spaces (M, ω,") (or algebraic varieties equipped with algebraic torus
actions) for which the T -action is GKM have been extensively studied in modern equivari-
ant symplectic and algebraic geometry, primarily due to the link provided by GKM theory
between T -equivariant topology and the combinatorics of what is called the moment graph
(or GKM graph) of M . Many natural examples arise in the realm of geometric represen-
tation theory and Schubert calculus, including generalized flag varieties G/B and G/P of

4 There are many variants on the definition of GKM actions (see e.g. [20–23]). In particular, in less restrictive
versions, the T -space M need not be compact nor symplectic, nor even finite-dimensional.
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Kac-Moody groups G (where B is a Borel subgroup and, more generally, P a parabolic sub-
group). Hence the orbifold invariants of the orbifold symplectic quotients of GKM spaces is
a natural area of study.

If the T -action is GKM, then for a large class of circle subgroups of T , the associated orbi-
fold symplectic quotients M //η S1 have no additive torsion in full integral orbifold K -theory,
as we now see.

Theorem 5.1 Suppose that (M, ω, T,") is a compact Hamiltonian T -space, and suppose
further that the T -action is GKM. Suppose that β : S1 ↪→ T is a circle subgroup in T such
that M S1 = MT , and let "S1 := β∗ ◦ " : M → Lie(S1)∗ denote the induced moment
map. Let η ∈ Lie(S1) be a regular value of "S1 , and X = M//ηS1 the orbifold symplectic
quotient. Then Korb(X) is free of additive torsion.

Proof We show that the hypotheses of Corollary 3.2 hold. Let Z := "−1
S1 (η), choose ξ ∈ t

such that its 1-parameter subgroup in T is dense in T , and let f := "ξ |Z . Properness of f
is immediate since M is compact. Hence it suffices to show that the critical sets Crit( f ) and
Crit( f |Zt ) are isolated S1-orbits. Observe that when M is a GKM space, Mt is also a GKM
space for any t ∈ S1. Hence it suffices to argue only for the case of Crit( f ); the others follow
similarly.

By the argument given in the proof of Lemma 2.2, Crit( f ) consists precisely of those
points p ∈ Z satisfying codim(StabT (p)) = 1. In other words, Crit( f ) = Z ∩ M1. The
closure M1 consists of a union of 2-spheres, and the T -action on each S2 is specified by
a non-zero weight α ∈ t∗Z obtained from the T -isotropy decomposition at one of the two
fixed points of the S2. By assumption on the circle subgroup S1, the kernel of the character
φα : T → S1 specified by α does not contain S1. Therefore, S1 acts nontrivially on each
S2 ⊆ M1, implying "S1 |S2 is nontrivial, and "−1

S1 (η)∩ S2 consists of a single S1-orbit. (Note
that Z does not contain any 0-dimensional orbits of S1 since, by assumption on regularity of
η, S1 acts locally freely on Z .)

Thus the hypotheses of Corollary 3.2 are satisfied, so Korb(X) is additively torsion-free.
45

Remark 5.2 We restrict to the case of compact symplectic manifolds in this section for sake
of brevity. However, the arguments given above could be altered to prove analogous results
in less-restrictive contexts of GKM theory (see e.g. [22,23]).

Remark 5.3 It may be an interesting exercise to generalize Theorem 5.1 to symplectic quo-
tients of GKM spaces by higher dimensional tori. One approach would be to consider quo-
tients of a k-independent GKM space (cf. [20]) by a (k − 1)-dimensional torus.

We now illustrate use of Theorem 5.1 for some coadjoint orbits of low-rank Lie type. We
will analyze examples derived from the natural G-action on coadjoint orbits of G, but we
must be careful to avoid the possibility of non-effective actions (so the symplectic quotient
is an effective orbifold). Therefore, in Examples 5.4, 5.5, and 6.4, we use the quotient group
PG := G/Z(G) where Z(G) denotes the (finite) center of G; by slight abuse of notation,
we also notate by T the image of the usual maximal torus under the quotient G → PG.

Example 5.4 Let M = Oλ
∼= F,ags(C3) be a full coadjoint orbit of the Lie group

P SU (3, C) with maximal torus T given by the standard diagonal subgroup. Here
λ∈ t∗ ⊆ su(3)∗ and Oλ is the λ-orbit of P SU (3) with respect to the usual coadjoint action.
Equip M = Oλ with the Kostant-Kirillov-Souriau form ωλ and let " : Oλ → t∗ be the
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Fig. 1 In grey, we indicate the
image of the equivariant
1-skeleton of M . The T -fixed
points correspond to the six
(corner) vertices of the graph.
The black line intersecting the
polytope represents the moment
image of the level set Z of an
S1-moment map "S1 . There are
5 critical components Ci in
Crit( f ), corresponding to the 5
thick black dots (the images of
the Ci under ")

T -moment map obtained by composing the projection π : su(3, C)∗ → t∗ with the inclu-
sion Oλ ↪→ su(3, C)∗. It is well-known that the T -action on M is GKM, and that the
equivariant 1-skeleton of Oλ maps under " to the GKM graph pictured in grey in Fig. 1.

For a choice of β : S1 ↪→ T such that OS1

λ = OT
λ , the level set Z of the S1-moment map

"S1 = β∗ ◦ " is schematically indicated in Fig. 1 by the thick black line; the (images under
" of the) components of Crit( f ) for a generic choice of f = "ξ |Z are indicated by the thick
black dots.

The standard maximal-torus T -action on a coadjoint orbit of a compact connected Lie
group G is GKM; hence we may apply Theorem 5.1. From Fig. 1 we see that, additively,
N KS1(Z) = Korb([Z/S1]) is a direct sum of representation rings R(/i,t ), one for each crit-
ical component Ci,t in Crit( f |Zt ), as t ranges in S1. In fact, only finitely many t ∈ S1 will
contribute nontrivial summands. Here the subgroup /i,t of S1 is the finite stabilizer group of a
point p in Ci,t , which in turn may be computed in a straightforward manner by analyzing the
intersection of the chosen S1 with each of the stabilizer subgroups appearing in the T -orbit
stratification of Oλ (cf. [18, Appendix B]).

Example 5.5 Now we consider the Lie type B2. Here we find it convenient to work with the
complex form P SO(5, C). We recall that the maximal torus T of type B2 is 2-dimensional
and the roots are given as in Fig. 2. We consider a coadjoint orbit M = Oλ, which may be
identified with the homogeneous space SO(5, C)/Pα1 where Pα1 is the parabolic subgroup
corresponding to the positive simple root {α1}. More specifically, we may take Oλ to be
the coadjoint orbit through the element λ ∈ t ∼= t∗ indicated in Fig. 2. The image of the
equivariant 1-skeleton for the Hamiltonian T -action on Oλ

∼= P SO(5, C)/Pα1 is depicted
in Fig. 3.

Given S1 ⊂ T with M S1 = MT and corresponding moment map "S1 , the level set
"−1

S1 (η) indicated (under its image under ") in the figure evidently lies entirely within an
open Bruhat cell of M . This Bruhat cell may be modelled on a single linear T -representation
with T -weights −α2,−α1 − α2,−2α1 − α2, which renders the explicit computation of the
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Fig. 2 The type B2 root system.
The dotted line is the hyperplane
distinguishing the positive from
the negative roots. The element λ
lying on the line spanned by
α1 + α2 specifies the coadjoint
orbit Oλ

Fig. 3 In grey, we indicate the
image of the equivariant
1-skeleton of
M = Oλ

∼= SO(5, C)/Pα1 . The
T -fixed points are the 4 outer
vertices. The black line
intersecting the polytope
represents the moment image
of the level set Z of an
S1-moment map "S1 . There are
3 critical components Ci
in Crit( f ), corresponding to the 3
thick black dots (the images of
the Ci under ")

relevant finite stabilizer subgroups /i,t ⊆ S1 particularly straightforward. This observation
motivates the discussion in the next section.

6 Semilocally Delzant spaces

We have already seen in Sects. 4 and 5 that the hypotheses of Corollary 3.2 are satisfied in sev-
eral situations familiar in equivariant symplectic geometry. We will now see that the methods
of proof used thus far in this manuscript allow us to make inductive use of the Main Theorem
to cover more cases of orbifold symplectic quotients. Specifically, we observe that the proof

123



Geom Dedicata

of Theorem 4.1 shows that the H -equivariant K -theory of the level set Z arising from a
Delzant construction has the properties that K 0

H (Z) is additive-torsion-free and K 1
H (Z) = 0.

Therefore, for (M, ω,") a Hamiltonian T -space and β : H ↪→ T a connected subtorus,
if it can be shown that each of the connected components of the critical sets appearing in
Theorem 1.1 can be H -equivariantly identified with a level set of a Delzant construction,
then the hypotheses (3a) and (3b) of Theorem 1.1 would be satisfied, thus allowing us to
apply the Main Theorem to a wider class of symplectic quotients.

To this end, we make the following definition.

Definition 6.1 Let (M, ω,"H ) be a Hamiltonian H -space with moment map "H : M →
h∗. We will say that an H -invariant subset C ⊂ M is semilocally Delzant with respect to
H if the following conditions are satisfied:

(1) There exists a 2n-dimensional H -invariant symplectic submanifold N ⊆ M , an
H -invariant open neighborhood U ⊆ N of C , and a H -equivariant symplectomor-
phism

ψ : U → V ⊆ Cn

for an open H -invariant subset V ⊆ Cn , where H acts linearly on Cn , with associated
moment map "Cn : Cn → h∗.

(2) Under the map ψ, the set C is identified with a level set of the induced H -moment map
on Cn . In other words, ψ(C) = "−1

Cn (η′) ⊆ Cn for some regular value η′ ∈ h∗.
(3) There exists ξ ∈ h such that "

ξ
Cn |ψ(C) is proper and bounded below.

We take a moment to discuss situations in equivariant symplectic geometry in which we
may expect the above definition to be applicable. Recall that the equivariant Darboux theo-
rem states that, near an isolated H -fixed point p ∈ M H , there exists an open neighborhood
Up of p which is H -equivariantly symplectomorphic to an affine space Cn equipped with a
linear H -action (here p is identified with the origin 0 of Cn). Under some technical assump-
tions (cf. [18]) which are not very restrictive in practice, it is also possible to arrange the
symplectomorphism such that the H -isotypic decomposition

Cn ∼=
⊕

α

Cα,

where the sum is over weights α ∈ h∗
Z and Cα denotes the subspace of Cn of weight α,

has the property that the moment map "Cn associated to this H -action has a component
which is proper and bounded below. It is then evident that a closed subset C of M which
lies entirely inside such an equivariant neighborhood Up ∼= Cn near p ∈ MT , and which
may be identified with a level set of "Cn via the equivariant Darboux theorem, is semilocally
Delzant. Moreover, similar statements could be made of subsets C ′ of M which lie entirely in
proper coordinate subspaces of Cn under the same equivariant identification with Up ⊆ Cn .
Informally, we may say that H -invariant closed subsets which are “near enough to an iso-
lated fixed point” can be semilocally Delzant as described above. In particular, this point of
view leads to concrete examples of symplectic quotient constructions (e.g. of Hamiltonian
H -spaces with isolated fixed points, such as those where the H -action is GKM) with critical
sets C satisfying Definition 6.1.

Indeed, we note that a concrete family of examples of Hamiltonian T -spaces with well-
known such equivariant neighborhoods are the flag varieties (coadjoint orbits) G/B and G/P
of compact connected Lie groups. The maximal torus T of the compact connected Lie group
G acts naturally on such homogeneous spaces, with fixed points corresponding to cosets
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W/WP . Moreover, G/B (similarly G/P) has a convenient open cover obtained by Weyl
translates of the open Bruhat cell Bw0 B/B, where w0 is the longest word in the Weyl group.
Thus, if a closed subset C of G/B (similarly G/P) may be seen to lie entirely within the big
Bruhat cell Bw0 B/B (or any of its translates), then the T -action near C may be modelled
by a linear T -action on C,(w0) (here ,(w0) denotes the Bruhat length of wo). We illustrate a
concrete example of such a situation, using a non-generic coadjoint orbit of Lie type B3 in
Example 6.4 below.

Returning to the discussion of orbifold K -theory, we first note that it is immediate from
Theorem 4.1 that if C is semilocally Delzant, then K 0

H (C) has no additive torsion and that
K 1

H (C) = 0. This leads to the following.

Theorem 6.2 Let M be a Hamiltonian T space, and let H ⊂ T be a connected subtorus.
Let Z = "−1

H (η) ⊂ M be a level set of the H-moment map

"H : M → h∗

and X = [Z/H ] be the orbifold obtained as a symplectic quotient M//H. Let ξ ∈ t be such
that T ξ = T , and f = "ξ |Z the corresponding moment map restricted to Z. Suppose that

(1) f is proper and bounded below,
(2) for all t ∈ H, the set of connected components π0(Crit( f |Zt )) is finite,
(3) for all t ∈ H, each connected component C of Crit( f |Zt ) is semi-locally Delzant with

respect to H.

Then Korb(X) has no additive torsion. Furthermore, K 1
H (Zt ) = 0 for all t ∈ H.

Proof By Theorem 4.1, Korb([C/H ]) has no additive torsion for each connected component
C of Crit ( f |Zt ) for all t ∈ H . In particular, K 0

H (C) has no torsion. Since we also have
K 1

H (C) = 0 for all critical sets, we have satisfied the hypotheses of Theorem 1.1. Hence
Korb(X) has no additive torsion. 45

Remark 6.3 We note that if the level set Z itself is semilocally Delzant, then by transferring
all analysis to the appropriate equivariant Darboux neighborhood U ⊆ Cn and using the same
argument as in Sect. 4, we immediately see that for all t ∈ H, all connected components C
of Crit( f |Zt ) are semilocally Delzant with respect to H . Hence, in this case the hypothesis
(3) above is automatically satisfied.

Example 6.4 We close with an example of a symplectic quotient of a type B3 coadjoint orbit
by a 2-dimensional torus. Since the subtorus is dimension 2, Theorem 5.1 does not apply,
but we may use Theorem 6.2. Recall that the complex form of the compact Lie group of type
B3 is P SO(7, C). The maximal torus T is 3-dimensional, and the root system is depicted in
Fig. 4. We denote the associated moment map by ".

We choose to work with a non-generic coadjoint orbit Oλ which may be identified with
the complex homogeneous space P SO(7, C)/Pα2,α3 where Pα2,α3 is the parabolic subgroup
corresponding to the subset of the positive simple roots {α2, α3}. We choose λ lying on
the positive span of the positive root L1 = α1 + α2 + α3 as in Fig. 4. The GKM graph
of Oλ is also schematically shown. The image of the equivariant 1-skeleton of M = Oλ

includes the three 2-dimensional interior quadrilaterals given by the convex hull of the roots
{±L1,±L2}, {±L2,±L3}, {±L1,±L3} respectively.

Let T ′ ⊂ T be the 2-dimensional connected subtorus of T corresponding to the 2-plane
spanned by the roots {±L1,±L2}, with corresponding projection πT ′ : t∗ → Lie(T ′)∗. We
wish to compute Korb of the symplectic quotient Oλ // T ′. The preimage π−1

T ′ (η) ∩ 4 in
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Fig. 4 The root diagram for type
B3 with positive simple roots
α1, α2, α3 (for details, see [14,
§19.3]). The element λ ∈ t∗ lies
on the positive span of the
positive root L1 = α1 + α2 + α3

Fig. 5 The GKM graph for
M = Oλ

∼= P SO(7, C)/Pα2,α3 .
The thick line and thick black
dots schematically illustrate the
(image under " of the) inverse
images Z := ("T ′ )−1(η) and
the critical components of
Crit("ξ |Z ), respectively

4 = "(Oλ) of a generic regular value η ∈ Lie(T ′)∗ is depicted as the thick interval in
Fig. 5.

We wish now to show that the full orbifold K -theory of the quotient Oλ // T ′ is free of
additive torsion by using Theorem 6.2. There are several ways to proceed. The first method,
which depends on Remark 6.3, is to simply observe that the full level set Z is semilocally
Delzant, owing to the fact that it lies entirely in the single open Bruhat cell Up centered at
the T -fixed point p corresponding to the root L1 = α1 + α2 + α3, and the T -action and
corresponding moment map " restricted to this Bruhat cell may be identified with that of a
linear T -action on C5 with weights {−L1,−L1 ± L2,−L1 ± L3} on the coordinates. The
T ′-action is the restriction of this linear T -action, hence Z is semilocally Delzant with respect
to T ′. By Remark 6.3 we may immediately apply Theorem 6.2, as desired.

In order to illustrate the concrete, straightforward nature of our method of computation,
for this example we also briefly sketch the explicit analysis of each of the components of
Crit( f ) for appropriate f = "ξ |Z . Analysis of Crit( f |Zt ), for t 2= 1, would of course be
similar. We begin by choosing ξ generic such that Crit( f ) consists of the three components
schematically indicated in Fig. 5.

Observe that the situations of the two exterior points p1, p3 in π−1
T ′ (η) ∩ 4 lying on the

boundary ∂4 are evidently symmetric, so it suffices to do the computations for only one
of them. We begin with the top exterior point p1. A straightforward analysis of the linear
T -action on the Bruhat cell described above shows that "−1(p1) ⊆ Oλ consists of a sin-
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gle T -orbit diffeomorphic to T ′. Moreover, the intersection of the stabilizer of the Bruhat
cell with T ′ is trivial, so p1 corresponds to a free T ′-orbit. Hence the contribution to the
full orbifold K -theory coming from p1 is the (ordinary) K -theory of a point, and is hence
torsion-free.

We now proceed with the interior point p2. (One way to view this computation is to recall
that the horizontal quadrilateral obtained as the convex hull of the roots {±L1,±L2} corre-
sponds to a subvariety of P SO(7, C)/Pα2,α3 which may be identified with the homogeneous
space of P SO(5, C) of type B2 studied in a previous example, although this is not necessary
for the computation.) Another straightforward analysis of linear T -actions, using the explicit
list of T -weights given above, yields that the corresponding symplectic quotient is the “tear-
drop” orbifold, i.e. the weighted projective space P(1, 2) (following notation of [15]). Hence
the contribution to the full orbifold K -theory of Oλ //µ T ′ coming from the interior point p2
is that associated to P(1, 2), which is explicitly computed in [15], and has no additive torsion.
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