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Hypertoric varieties are hyperkähler analogues of toric varieties, and are constructed
as abelian hyperkähler quotients T ∗Cn////T of a quaternionic affine space. Just as sym-
plectic toric orbifolds are determined by labelled polytopes, orbifold hypertoric varieties
are intimately related to the combinatorics of hyperplane arrangements. By develop-
ing hyperkähler analogues of symplectic techniques developed by Goldin, Holm, and
Knutson, we give an explicit combinatorial description of the Chen–Ruan orbifold coho-
mology of an orbifold hypertoric variety in terms of the combinatorial data of a rational
cooriented weighted hyperplane arrangement H. We detail several explicit examples,
including some computations of orbifold Betti numbers (and Euler characteristics).
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1. Introduction

The main result of this manuscript is an explicit combinatorial computation of the
Chen–Ruan orbifold cohomology H∗

CR(M) [3] of an orbifold hypertoric variety M .
Hypertoric varieties are hyperkähler analogues of toric varieties, and were first
introduced by Bielawski and Dancer [1], and further studied by Konno [10, 11]
and Hausel and Sturmfels [7], among others. Just as a symplectic toric orbifold
is determined by a labelled polytope, the theory of orbifold hypertoric varieties
is intimately related to the combinatorial data of a related rational cooriented
hyperplane arrangement H. Our description of H∗

CR(M) is given purely in terms
of this arrangement H. The fact that these hypertoric varieties are constructed as
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hyperkähler quotients T ∗Cn////T of a quaternionic affine space T∗Cn ∼= Hn (via the
hyperkähler analogue of the Delzant construction of Kähler toric varieties) is crucial
to our techniques.

Hyperkähler quotients appear in many areas of mathematics. For instance, in
representation theory, Nakajima’s quiver varieties give rise to geometric models of
representations (see e.g. [13–15]). Furthermore, many moduli spaces appearing in
physics, such as spaces of Yang–Mills instantons on 4-manifolds or the solutions
to the Yang–Mills–Higgs equations on a Riemann surface, arise via hyperkähler
quotient constructions. In each case, the study of topological invariants, such as
cohomology rings or K-theory, of these quotients are of interest. In the case of
hypertoric varieties, there are also close connections between the (ordinary or Borel-
equivariant) cohomology rings of the varieties and the combinatorial theory of the
corresponding hyperplane arrangements [6, 7, 10, 11]. Generalizing known such
results to the orbifold case is of current interest. For example, recent work of Proud-
foot and Webster [16, Sec. 6] on the intersection cohomology of singular hypertoric
varieties and the cohomology of their orbifold resolutions contains cohomological
formulas which only apply in the unimodular case; it would be of interest to know
whether there are orbifold versions of their statements.

In this paper, we focus on the combinatorics of the hyperplane arrangement
associated to the Chen–Ruan orbifold cohomology of orbifold hypertoric vari-
eties. Chen–Ruan orbifold cohomology rings were introduced in [3] as the degree 0
piece of the Gromov–Witten theory of an orbifold, following work in physics [18].
This ring carries, in addition to the data of the usual singular cohomology ring of
the underlying space, more delicate information (e.g. about the orbifold structure
groups). Additively, H∗

CR(M) is simply the usual singular cohomology of the iner-
tia orbifold M̃ associated to M ; the product structure, on the other hand, is much
more subtle, incorporating the data of higher twisted sectors. In this manuscript,
we provide an explicit presentation, via generators and relations, of this Chen–Ruan
cohomology ring for a class of orbifold hypertoric varieties.

Our approach is to develop hyperkähler analogues of the symplectic-geometric
techniques as introduced by Goldin, Holm, and Knutson in [5] to compute Chen–
Ruan orbifold cohomology. As in their work, we take advantage of the fact that a
hypertoric variety is by construction a global quotient of a manifold by a torus. We
now briefly recall the main results of [5]. Let T be a compact connected torus, let
N be a compact Hamiltonian T -manifold moment map µ : N → t∗, and suppose
that α is a regular value of µ. Then the inclusion µ−1(α) ↪→ N induces a natural
ringa homomorphism, often called the Kirwan map:

κ : H∗
T (N) ! H∗

T (µ−1(α)) ∼= H∗(N//αT ), (1.1)

which is a surjection [9]. Here N//αT := µ−1(α)/T is by definition the symplectic
quotient of N at α. The main result of [5] is an orbifold cohomology version of (1.1)

aIn this paper, we take rational coefficients for all cohomology rings.
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for abelian symplectic quotients. In other words, they show that the inclusion
µ−1(α) → N induces a surjective ring map (the “orbifold Kirwan map”)

κNH : NH∗,#
T (N) ! NH∗,#

T (µ−1(α)) ∼= H∗
CR(M), (1.2)

where the domain is a new ring which they define: it is the inertial cohomology
ring NH∗,#

T (N) of the T -space N . (Here it is nontrivial that κNH is a ring homo-
morphism; the same subtlety also arises in the hyperkähler case.) Moreover, they
give an explicit description of the kernel of κNH . Their proof relies on symplectic-
geometric properties of the fixed point sets N t for t ∈ T in abelian Hamiltonian
spaces, as well as on the original Kirwan surjectivity result (1.1).

In this paper, we prove a parallel story in the hypertoric setting. A direct
hyperkähler analogue of (1.2) is nontrivial for several reasons, foremost among which
is that it is not known whether the hyperkähler analogue of (1.1) is, in general, sur-
jective. However, in the special case where M is a smooth or orbifold hypertoric
variety [7, 11], obtained as a hyperkähler quotient of T ∗Cn, a hyperkähler analogue
of (1.1) does hold, allowing us to obtain results in this setting. The other nontrivial
issues are the non-compactness of the hypertoric varieties (in [5], all orbifolds are
assumed compact) and the analysis of the hyperkähler-geometric properties of the
fixed point sets N t ⊆ N for t ∈ T . We deal with these issues in Sec. 4 to obtain
the following. Let µHK : M → t∗ ⊕ t∗C denote the hyperkähler moment map on
T ∗Cn, and T ∗Cn////T its hyperkähler quotient at a regular value (α,αC) ∈ t∗ ⊕ t∗C
as described in Sec. 2.

Theorem 1.1. Let M be an orbifold hypertoric variety T ∗Cn////T . There is a sur-
jective ring homomorphism

κΓ
NH : NH∗,Γ

T (T ∗Cn) ! H∗
CR(M), (1.3)

where Γ is the subgroup of T generated by finite stabilizers, NH∗,Γ
T (T ∗Cn) is the

Γ-subring of the inertial cohomology ring NH∗,#
T (T ∗Cn), and H∗

CR(M) is the Chen–
Ruan cohomology of M .

The point of Theorem 1.1 is that we can, in principle, compute the orbifold coho-
mology of the hypertoric variety M = T ∗Cn////T as a quotient of NH∗,Γ

T (T ∗Cn) by
the kernel of (1.3). In the spirit of [10, 11, 7, 6], we give an explicit algorithm
for computing both the domain NH ∗,Γ

T (T ∗Cn) and the ideal ker(κΓ
NH ) in terms of

the combinatorics of a central rational cooriented weighted hyperplane arrange-
ment Hcent along with a choice of simple affinization H. This combinatorial data is
obtained from the data of the T -action on T ∗Cn and an appropriate choice of level
set of the hyperkähler moment map (explained in detail in Sec. 2). We now give a
rough statement of our main theorem, which gives a flavor of the ingredients in the
computation; the precise version is Theorem 5.1.

Theorem 1.2. Let M = T ∗Cn////T be an orbifold hypertoric variety. Let H =
{Hi}n

i=1 be a simple affine rational cooriented hyperplane arrangement with positive
normal vectors {ai}n

i=1 associated to M as described in Sec. 2. Then the Chen–Ruan
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cohomology of M is given by

H∗
CR(M) ∼= Q[u1, u2, . . . , un][{γt}t∈Γ]

/
I + J + K + 〈γid − 1〉,

where

• Γ is a finite subgroup of T determined by linear independence relations among
the {ai}n

i=1, made precise in (5.4).
• I is an ideal determined by T -weight data coming from the action of T on T ∗Cn

specified by H, made precise in Proposition 5.2.
• J is an ideal generated by linear relations coming from an exact sequence of Lie

algebras 0 → t → tn → td → 0 given by the T -action on T ∗Cn specified by H,
made precise in (2.1).

• K is determined by intersection data of the hyperplanes Hi in H, and made precise
in Proposition 5.3.

In summary, this manuscript can be viewed in any of the following ways. First,
it is an example of an explicit computation of the Chen–Ruan orbifold cohomology
of hyperkähler quotients, and a further development, in the hyperkähler setting, of
the definition and use of inertial cohomology as introduced in [5]. In particular, we
note that our methods would also apply to any class of hyperkähler quotients for
which there exists an appropriate analogue of the Kirwan surjection (1.1). Simi-
larly, although in this manuscript we restrict our attention to Q coefficients for our
cohomology rings, if a Z-coefficient analogue of the Kirwan surjection for orbifold
hypertoric varieties is proven, then our methods will easily generalize to the set-
ting of Z coefficients. Second, it is another exploration of the relationship between
the geometry of hypertoric varieties and the combinatorics of hyperplane arrange-
ments. Finally, it is the hyperkähler-geometric analogue of the algebraic-geometric
description of the Chow ring of toric Deligne–Mumford stacks in [2].

In [8], Jiang and Tseng independently develop techniques for an algebraic-
geometric version of these results by defining “hypertoric DM stacks” using
extended stacky fans, following work of [2]. Their work applies to the sub-class
of hypertoric varieties M obtained by hyperkähler quotients at regular values of
the form (α, 0). In this case, there is a simple affine hyperplane arrangement H in
t∗ determined by the data of a moment map for a residual torus action on M ; the
results of [8] are phrased in terms of this arrangement H. Our results, on the other
hand, apply to an orbifold hypertoric variety obtained as a quotient at any regular
value (α,αC). This is because we do not keep track of the hyperkähler structure
of the quotient (which does depend on this choice of level set); the Chen–Ruan
orbifold cohomology of the quotient turns out to be independent of this choice,
i.e. is the same for any regular value. The main difference between the approach
taken in this manuscript and [8] is that Jiang and Tseng begin with the data of a
simple hyperplane arrangement H and then directly construct the hypertoric DM
stack associated to H, which has coarse moduli space the corresponding orbifold
hypertoric variety. As a result, they compute the product in the orbifold Chow ring
entirely in terms of the quotient hypertoric variety. In contrast, our method is to
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work almost entirely “upstairs” on T ∗Cn with a linear T -action, before taking a
hyperkähler quotient. This simplifies some computations (as in [5]) by allowing us
to work with linear T -representations, and carries the information of a family of
hypertoric varieties at once.

Since orbifold Chen–Ruan cohomology reduces to ordinary cohomology when M
is smooth, both our work and that of [8] reduce to the description of H∗(M) given
in [11] (see also [7]) in the case when M is a smooth hypertoric variety. As Jiang and
Tseng illustrate [8], this can be useful to show that the ordinary cohomology of a
smooth hyperkähler crepant resolution of C2/Zn as constructed by Kronheimer [12]
is isomorphic to the orbifold cohomology of C2/Zn, which can be computed using [4].

We now give a summary of the contents of the paper. In Sec. 2, we give a brief
account of the construction of hypertoric varieties as a hyperkähler quotient, based
on the data of a hyperplane arrangement. In Sec. 3, we briefly recall the definition
of inertial cohomology given in [5]. Then in Sec. 4, we prove that there exists a
surjection in inertial cohomology as in (1.2). We give a combinatorial description of
the Chen–Ruan orbifold cohomology of a hypertoric variety, based on the data of the
hyperplane arrangementH, in Sec. 5. In Sec. 6, we work out in detail several explicit
examples, including some computations of orbifold Betti numbers and orbifold Euler
characteristics. The Appendix contains a detailed discussion of the isomorphism
between inertial cohomology of a T -space Z and the Chen–Ruan cohomology of
the quotient X = Z/T (also discussed for the compact case in [5]), as well as a
careful proof of the correspondence between Chen and Ruan’s definition of the
obstruction bundle with that used in the algebraic geometry literature (e.g. [2, 4]).

2. Background: Hypertoric Varieties

We first briefly describe the construction of hypertoric varieties in order to set the
notation and conventions to be used throughout the rest of the paper. We refer the
reader to [1, 6, 7] for a more leisurely account.

We begin with the hyperkähler space Hn, thought of as a holomorphic cotangent
bundle T ∗Cn ∼= C2n. This is a hyperkähler manifold with real symplectic form ωR
given by the identification with T ∗Cn ∼= C2n and ωC the canonical holomorphic
symplectic form on a cotangent bundle. The standard linear diagonal action of the
compact torus T n on Cn induces an action on the holomorphic cotangent bundle
T ∗Cn which is hyperhamiltonian [1]. We will refer to this action as the standard
hyperhamiltonian action of T n on T ∗Cn. The hyperkähler T n-moment map
µ̃HK = (µ̃R, µ̃C) on T ∗Cn is given as follows. Let {ui}n

i=1 be a dual basis to {εi}n
i=1

in (tn)∗, and let (z, w) = (z1, . . . , zn, w1, . . . , wn) ∈ T ∗Cn, where the zi are the base
variables and the wi are the fiber variables. We have

µ̃R(z, w) =
1
2

n∑

i=1

(
‖zi‖2 − ‖wi‖2

)
ui ∈ (tn)∗, and

µ̃C(z, w) =
n∑

i=1

ziwiui ∈ (tnC)∗.
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Let Hcent = {Hcent
i }n

i=1 be a central rational cooriented weighted hyperplane
arrangement in (td)∗ with positive normal vectors {ai}n

i=1 in tdZ. Here, “weighted”
means that we do not require the ai to be primitive vectors. We now use this data
to restrict the T n action to that of a subtorus. Let {εi}n

i=1 be a basis of tn. Define
a linear map β : tn → td by β(εi) = ai ∈ tdZ. Let t = tk := ker(β) ⊆ tn, where
k = n − d, with inclusion ι : tk ↪→ tn. This yields an exact sequence

0 !! t = tk
ι !! tn

β !! td !! 0,
εi ! !! ai

(2.1)

which on the one hand exponentiates to an exact sequence

1 !! T = T k
exp ι !! T n

exp β !! T d !! 1, (2.2)

and on the other hand dualizes to the exact sequence

0 !! (td)∗
β∗

!!!! (tn)∗ ι∗ !! t∗ = (tk)∗ !! 0.
ui

! !! λi := ι∗ui

(2.3)

We will always assume that the set of integer vectors {ai}n
i=1 spans td over Z, so

that the kernel T = T k := ker(expβ) is connected; this assumption is also made
in [7].

Now we restrict the T n-action on T ∗Cn to the subtorus T . Let λi := ι∗ui ∈ (tk)∗Z
as in (2.3). Then λi is the T -weight defining the action of the subtorus T on the
ith coordinate of Cn. Let expλi denote the corresponding element in Hom(T, S1).
Since the action of T on T ∗Cn is given by the natural lift of that on Cn, we have
that for t ∈ T, (z, w) ∈ T ∗Cn,

t · (z, w)=((exp λ1)(t)z1, . . . , (expλn)(t)zn, (expλ1)(t)−1w1, . . . , (expλn)(t)−1wn).
(2.4)

The moment maps for the hyperhamiltonian T -action on T ∗Cn are given by com-
posing µ̃HK with the linear projection ι∗ : (tn)∗ → t∗. Thus we obtain the formulas

µR(z, w) =
1
2

n∑

i=1

(
‖zi‖2 − ‖wi‖2

)
λi ∈ t∗, and µC(z, w) =

n∑

i=1

ziwiλi ∈ t∗C.

(2.5)

We will assume throughout that λi *= 0, ∀i.
In order to specify the hyperkähler quotient, we now pick a regular value

(α,αC) ∈ t∗ ⊕ t∗C ∼= (t∗)3 at which to reduce. Any element α ∈ t∗ specifies an
affinization H = {Hi}n

i=1 of Hcent via the equations

Hi := {x ∈ (td)∗ : 〈x, ai〉 = 〈−α̃, εi〉},
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where 〈·, ·〉 denotes the natural pairing of a vector space and its dual, and α̃ ∈ (tn)∗

is a lift of α, i.e. ι∗α̃ = α. (A different choice of lift just translates the whole
hyperplane arrangement by a constant.)

In particular, the choice of parameter (α,αC) ∈ (t∗)3 corresponds to three sep-
arate choices of affinization of the central arrangement Hcent. Hence a hypertoric
variety is determined by the combinatorial data of a central weighted arrangement
Hcent and, additionally, 3 choices of affinization of Hcent. However, in the case of
our computation, this data can be simplified considerably. This is because a preim-
age µ−1

HK(α,αC) of a regular value of µHK is T n-equivariantly diffeomorphic to the
preimage µ−1

HK(α′,α′C) of any other regular value; this can be seen by an argument
essentially equivalent to the proof of [6, Lemma 2.1]. Hence the Chen–Ruan coho-
mology of T ∗Cn////(α,αC)T can be seen to be isomorphic to that of T ∗Cn////(α′,α′

C)T, as
will be discussed further in Remark 3.3. In other words, the Chen–Ruan cohomology
of an orbifold hypertoric variety is determined by the original central arrangement
Hcent, and is independent of these choices of affine structures given by regular val-
ues. In practice, however, it is useful to pick a convenient affinization with which to
work. Namely, if α ∈ t∗ is chosen such that the corresponding affinization of Hcent

is simpleb, then (α, 0) ∈ t∗ ⊕ t∗C is a regular value [1, Theorem 3.3]. Here, since
the last two parameters are both 0, only the first factor gives rise to a nontrivial
affinization of Hcent. We will denote by H = {Hi}n

i=1 this simple affine rational
cooriented weighted hyperplane arrangement obtained from the data of Hcent and
an appropriate α ∈ t∗.

3. Background: Inertial Cohomology

We begin with a brief account of inertial cohomology as developed in [5], which
gives us a model for computing the orbifold cohomology of the hyperkähler quo-
tients constructed in Sec. 2. Readers already familiar with the definition of orbifold
cohomology in the sense of Chen and Ruan will find Sec. 3.1 straightforward, since
the product on the inertial cohomology of a T -space Z is defined precisely to mimic
the Chen–Ruan product in the case that the quotient X = Z/T is an orbifold,
where T acts with finite stabilizers on Z. The contribution of [5] is to notice that
in other cases of T -spaces (such as Hamiltonian T -spaces), the product on inertial
cohomology can be described in terms of a (different) product defined in terms of
fixed point data. This (different) product, which is easier to compute, is briefly
recalled in Sec. 3.2; it will play a key role in our computation of the Chen–Ruan
orbifold cohomology of hypertoric varieties.

3.1. Inertial cohomology and the ! product

Let N be a stably complex T -space. For any t ∈ T, let N t denote the t-fixed points.
Since T is abelian, each N t is also a T -space.

bA hyperplane arrangement is simple if any subset of ! hyperplanes intersect in codimension !.
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Definition 3.1. The inertial cohomology of the space N is, as a H∗
T (pt)-module,

given by

NH∗,#
T (N) :=

⊕

t∈T

H∗
T (N t), (3.1)

where the sum indicates the , grading, i.e. NH∗,t
T (N) := H∗

T (N t).

The ∗ grading on the left-hand side is a real-valued grading defined in [17] which
is obtained from the ∗ grading on the right-hand side by a shift depending (in this
case) on the T -action; see [5, Sec. 3] for a detailed discussion.

Remark 3.1. In the case of the orbifold hypertoric varieties under consideration
in this paper, it will turn out that the ∗ grading is integral and always even.

Although the stably complex structure does not enter into the definition of
the inertial cohomology as an additive group, it is an essential ingredient in the
definition of its product structure, which we now discuss; first, however, we warn
the reader that the definition of the product on NH∗,#

T (N), which we denote by
a* b, is not necessary for understanding the statement of our main Theorem 1.1,
but is necessary for the proof. We include a brief definition only for completeness,
and refer the reader to [5, Sec. 3] for details.

To describe the product, we make use of the top Chern class of the “obstruction
bundle”, which is a vector bundle over connected components of certain subman-
ifolds of N . More specifically, let t1, t2 ∈ T , let H = 〈t1, t2〉 be the subgroup they
generate, and NH the submanifold of points fixed by H . For any connected com-
ponent Y of NH , the normal bundle ν(Y, N) of Y in N is naturally equipped with
an H-action. We may decompose ν(Y, N) into isotypic components with respect to
the H-action:

ν(Y, N) =
⊕

λ∈Ĥ

Iλ,

where Ĥ denotes the character group of H .

Definition 3.2. Let λ ∈ Ĥ and t ∈ H . For any connected component Y of NH ,
we define the logweight of t with respect to λ, denoted aλ(t), to be the real
number in [0, 1) such that λ(t) = e2πiaλ(t).

Note that for any elements t1, t2 ∈ H and for any connected component of NH ,
the sum aλ(t1) + aλ(t2) + aλ((t1t2)−1) must be 0, 1, or 2.

Definition 3.3. The obstruction bundle is a vector bundle over each component
Y of NH specified by

E|Y :=
⊕

λ∈Ĥ
aλ(t1)+aλ(t2)+aλ((t1t2)

−1)=2

Iλ,

where ν(Y, N) =
⊕

Iλ. We write E → NH to denote the union over all connected
components. Note that the dimension may vary over components. The virtual
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fundamental class ε ∈ H∗
T (NH) is given by

ε :=
∑

Y ∈π0(NH)

e(E|Y ),

where e(E|Y ) is the T -equivariant Euler class of E|Y , considered as an element of
H∗

T (Y ).

Now let ei : NH → N ti for i = 1, 2; and e3 : NH → N t1t2 denote the natural
inclusions. These induce pullbacks e∗i : H∗

T (N ti) → H∗
T (NH) for i = 1, 2; and

the pushforward (e3)∗ : H∗
T (NH) → H∗

T (N t1t2). Let a ∈ NH∗,t1
T (N) and b ∈

NH∗,t2
T (N) be homogeneous classes in ,. Then we define the product a * b ∈

NH∗,t1t2
T (N), a homogeneous class in ,, to be

a*b := (e3)∗(e∗1(a) · e∗2(b) · ε) ∈ H∗
T (N t1t2) = NH∗,t1t2

T (N) ⊂ NH∗,#
T (N),

where the product · on the right-hand side is the usual product on H∗
T (NH). Extend-

ing linearly, the product is defined on any two classes a, b.

Remark 3.2. It follows immediately from the definition of the product that, for
any subgroup Γ of T , there is a subring NH∗,Γ

T (N) given by

NH∗,Γ
T (N) =

⊕

t∈Γ

H∗
T (N t).

We call this ring the Γ-subring of NH∗,#
T (N).

Remark 3.3. It is straightforward to show from the definition of NH∗,#
T that if

Z, Z ′ are stably complex T -spaces equipped with locally free T -actions and there
exists a T -equivariant diffeomorphism φ : Z → Z ′, then NH∗,#

T (Z) ∼= NH∗,#
T (Z ′)

as graded rings. Together with the proof given in the Appendix that the inertial
cohomology of Z is isomorphic to the Chen–Ruan cohomology of the quotient orb-
ifold, this justifies the claim in Sec. 2, i.e. H∗

CR(M) is indeed independent of the
choice of regular value (α,αC) ∈ t∗ ⊕ t∗C. In particular, we may restrict without loss
of generality, to the case (α, 0).

3.2. The product on NH∗,"
T (N) when N is robustly equivariantly

injective

In this section, we give a different description of the* product which will be easier
to use for our computations. The T -space N is robustly equivariantly injective
if the natural inclusion i : NT ↪→ N t induces an injection in equivariant cohomology

i∗t : H∗
T (N t) → H∗

T (NT ),

for all t ∈ T . When N satisfies this property, the product structure on NH∗,#
T (N)

can be described in terms of fixed point data and the local structure of the T -action
near fixed points; see [5]. Robust equivariant injectivity is a strong condition: for
instance, if T acts locally freely on N , then NT = ∅ and N certainly cannot be
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robustly equivariantly injective. On the other hand, Hamiltonian T -spaces are an
important source of examples of robustly equivariantly injective T -spaces.

For any component F of the fixed point set NT , T acts on the normal bundle
to F . This representation splits into isotypic component under the action:

ν(F, N) =
⊕

λ∈T̂

Iλ.

Let a ∈ NH∗,t1
T (N) and b ∈ NH∗,t2

T (N) be homogeneous classes in ,. Then i∗t1(a)
and i∗t2(b) are classes in H∗

T ((N t1)T ) and H∗
T ((N t2)T ), respectively. Both of these

rings are identified naturally with H∗
T (NT ). We define

i∗t1(a) - i∗t2(b)|F := i∗t1(a)|F · i∗t2(b)|F ·
∏

Iλ⊂ν(F,N)

e(Iλ)aλ(t1)+aλ(t2)−aλ(t1t2),

where e(Iλ) ∈ H∗
T (F ) is the equivariant Euler class of Iλ, and all the products on

the right-hand side are computed using the usual product in H∗
T (F ). Note that the

exponent is either 0 (if aλ(t1) + aλ(t2) < 1) or 1 (otherwise). By taking a sum over
the connected components and by extending linearly, this defines a new product,
which we call the - product, on the image of i∗ in ⊕t∈T H∗(NT ). When N is
robustly equivariantly injective, the map i∗ is injective, so the - product uniquely
defines a product on NH∗,#

T (N). By abuse of notation, we denote this product also
as a - b, for a, b ∈ NH∗,#

T (N).
The crucial fact, proven in [5], is that these two product structures agree, i.e.

a*b = a - b,

when N is robustly equivariantly injective. Hence in the robustly equivariantly
injective case we may, for the purposes of computation, work exclusively with the
- product. Note that N = T ∗Cn equipped with the T -action described in Sec. 2 is
a Hamiltonian T -space, and in particular it is robustly equivariantly injective. We
use this in Secs. 5 and 6 to simplify the combinatorics.

4. Surjection in Inertial Cohomology

Let M be a hypertoric variety as constructed in Sec. 2. Let Z := µ−1
HK(α,αC) ⊆

T ∗Cn be the level set of the hyperkähler moment map such that M = Z/T. In this
section, we show that the map

κNH : NH∗,#
T (T ∗Cn) → NH∗,#

T (Z) (4.1)

induced by the inclusion i : Z ↪→ T ∗Cn is a surjective ring homomorphism. In the
Appendix we prove that the latter ring is isomorphic to the orbifold cohomology
of M as (graded) rings, thus completing the proof of Theorem 1.1. An explicit
description of both the domain and the kernel of κNH , provided in Sec. 5, will
yield a combinatorial description of H∗

CR(M). For the rest of the section, we will be
largely following the outline of the proof of the symplectic case in [5]. However, there
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are several new considerations in the hyperkähler case, which we will discuss as they
arise.

We must first justify why the inertial cohomology of the level Z is defined.
For this, it suffices to observe that the normal bundle to Z is trivial since Z is
the preimage of a regular value of µHK . Therefore, the complex bundle T (T ∗Cn)
is a stabilization of TZ, so Z is also a stably complex T -space and NH∗,#

T (Z) is
well-defined.

Now consider the individual maps on Borel-equivariant cohomology

κt
NH : H∗

T ((T ∗Cn)t) → H∗
T (Zt) (4.2)

induced by the inclusions Zt ↪→ (T ∗Cn)t. Then we define the map on inertial
cohomology to be the direct sum of the κt, i.e.

κNH :=
⊕

t∈T

κt
NH : NH∗,#

T (T ∗Cn) → NH∗,#
T (Z). (4.3)

This is a priori only a map of H∗
T (p)-modules, not necessarily a ring homomor-

phism. Indeed, given an inclusion of the T -fixed point set NT ↪→ N of a Hamiltonian
T -space, the induced map NH∗,#

T (N) → NH∗,#
T (NT ) on inertial cohomology does

not, in general, preserve the product structure since the obstruction bundles are all
trivial for NH∗,#

T (NT ). However, if a T -equivariant inclusion ι : P ↪→ N behaves
well with respect to the fixed point sets N t for all t ∈ T, then the obstruction
bundles from Definition 3.3 also behave well, and the induced map on NH∗,#

T is in
fact a ring homomorphism. We quote the following [5, Proposition 5.1].

Proposition 4.1 (Goldin–Holm–Knutson). Let N be a stably complex T -space.
Let ι : P ↪→ N be a T -invariant inclusion and suppose also that P is transverse to
any N t, t ∈ T. Then the map induced by inclusion ι∗ : NH∗,#

T (N) → NH∗,#
T (P ) is

a ring homomorphism.

Thus, in order to check that the map κNH is a ring homomorphism, it suffices
to check that the level set Z is transverse to any (T ∗Cn)t. We have the following
general computation.

Lemma 4.1. Let T be a compact torus, and let W be a hyperhamiltonian T -space
with moment map µHK = (µ1, µ2, µ3) : W → (t∗)3. Assume (α1,α2,α3) is a regular
value of µHK , and let Z denote the level set µ−1

HK(α1,α2,α3) ⊆ W. Then Z is
transverse to W t for any t ∈ T.

Proof. The statement holds trivially if Z ∩ W t = ∅. We assume that Z ∩ W t *= ∅
and that W t is connected; otherwise, we do the argument component by component.
Let y ∈ Z ∩ W t, and let ıt : W t ↪→ W denote the inclusion. Since W t is a fixed
point set of a Hamiltonian T -action with respect to each symplectic form ωi, W t is
itself a hyperhamiltonian T -submanifold of W , with moment map ı∗t µHK .

Since (α1,α2,α3) is regular, the Lie algebra Lie(Stab(y)) ⊆ t of the stabilizer
of y is 0. In order to prove the transversality, it suffices to prove that d(ı∗t µHK)y
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is surjective. Since W t is Kähler, and Lie(Stab(y)) = {0}, d(ı∗t µi)y|Ji(Ty(T ·y)) is
surjective onto t∗ for each i, where T · y is the T -orbit through y and Ty(T · y)
its tangent space at y. Moreover, since W t is hyperkähler, the three subspaces
Ji(Ty(T ·y)) for i = 1, 2, 3 are mutually orthogonal. In order to show that d(ı∗t µHK)y

is surjective onto (t∗)3, it suffices to show that d(ı∗t µi)(Jj(Ty(T · y))) = 0 for i *= j.
Without loss of generality, we take i = 2, j = 1. For any X, Y ∈ t,

〈d(ı∗t µ2)(J1X'
y), Y 〉 = ω2(Y '

y , J1X'
y) by definition of a moment map

= −g(Y '
y , J2J1X'

y) compatibility between g,ω2

= g(Y '
y , J3X'

y) quaternionic relation between the Ji

= −ω3(Y '
y , X'

y) compatibility between g,ω3

= 0 since Ty(T · y) is isotropic with respect
to ω3.

Thus d(ı∗t µHK)y maps the span of the three subspaces Ji(Ty(T ·y)) ⊆ TyW t surjec-
tively onto T(α1,α2,α3)(t

∗)3 ∼= (t∗)3. This implies the level set Z = µ−1
HK(α1,α2,α3)

is transverse to W t.

Proposition 4.1 together with Lemma 4.1 proves the following general fact.

Proposition 4.2. Let T be a compact torus, and let W be a hyperhamiltonian
T -space with moment map µHK = (µ1, µ2, µ3) : W → (t∗)3. Assume (α1,α2,α3) is
a regular value of µHK , and let Z denote the level set µ−1

HK(α1,α2,α3) ⊆ W. Then
the map on inertial cohomology induced by the inclusion Z ↪→ W,

NH∗,#
T (W ) → NH∗,#

T (Z),

is a ring homomorphism.

In particular, in our case of hypertoric varieties, the map κNH defined in (4.3) is
a ring homomorphism. Now it remains to show that κNH = ⊕t∈Tκt

NH is surjective.
To do this, we show that

κt
NH : H∗

T ((T ∗Cn)t) ! H∗
T (Zt) (4.4)

is surjective for each t ∈ T . We begin with an analysis of these t-fixed point sets
(T ∗Cn)t. A direct calculation shows that

(T ∗Cn)t := {(z, w) ∈ T ∗Cn | zi = wi = 0 if (expλi)(t) *= 1}
∼= T ∗CS(t)

is a quaternionic affine subspace of T ∗Cn, where S(t) := {i ∈ {1, 2, . . . , n} :
(expλi)(t) = 1} ⊆ {1, 2, . . . , n} and

CS(t) := {(z1, z2, . . . , zn) ∈ Cn : zi = 0 if i *∈ S(t)}. (4.5)

In addition, T ∗CS(t) is also a hyperhamiltonian T -space with moment map given by
ι∗t µHK , where ιt : (T ∗Cn)t ↪→ T ∗Cn denotes the inclusion. This computation allows
us to conclude that (4.4) is the ordinary Kirwan map for the hypertoric subvariety
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T ∗CS(t)////(α,αC)T = Zt/T of M . Since these maps are known to be surjective [11, 7],
we have just proven the following.

Theorem 4.1. Let T ∗Cn be a hyperhamiltonian T -space given by restriction of
the standard hyperhamiltonian T n-action on T ∗Cn, where the inclusion T ↪→ T n

is determined as in Sec. 2. Then the map on inertial cohomology induced by the
inclusion Z = µ−1

HK(α,αC) ↪→ T ∗Cn,

κNH : NH∗,#
T (T ∗Cn) → NH∗,#

T (Z),

is a surjective ring homomorphism.

Inertial cohomology is a direct sum over infinitely many elements t ∈ T, so
Theorem 4.1 is not at all amenable to computation. However, Theorem 4.1 can be
substantially simplified for computational purposes (in particular, it can be made
finite). We first establish some terminology. Suppose a torus T acts on a space Y .
Suppose y ∈ Y and the stabilizer group Stab(y) ⊆ T is finite. Then we call Stab(y)
a finite stabilizer group. Similarly, given a finite stabilizer group Stab(y), we
call any element t ∈ Stab(y) a finite stabilizer (element). We let Γ denote the
subgroup in T generated by finite stabilizers. In the case of a linear T -action on
T ∗Cn, this is a finite subgroup of T , since the T -action is determined by a finite
set of weights.

By Remark 3.2,

NH∗,Γ
T (T ∗Cn) :=

⊕

t∈Γ

NH∗,t
T (T ∗Cn) ⊂ NH∗,#

T (T ∗Cn), (4.6)

is a subring of NH∗,#
T (T ∗Cn). We call this the Γ-subring. We now show that κNH

is still surjective when restricted to the Γ-subring.

Theorem 4.2. Let T ∗Cn be a hyperhamiltonian T -space given by restriction of
the standard hyperhamiltonian T n-action on T ∗Cn, where the inclusion T ↪→ T n is
determined as in Sec. 2. Let Γ be the subgroup in T generated by finite stabilizers.
Then the map on the Γ-subrings of inertial cohomology induced by the inclusion
Z = µ−1

HK(α,αC) ↪→ T ∗Cn,

κΓ
NH := κNH |NH∗,Γ

T (T∗Cn) : NH∗,Γ
T (T ∗Cn) → NH∗,Γ

T (Z) ∼= NH∗,#
T (Z),

is a surjective ring homomorphism.

Proof. Since the level set Z is the preimage of a regular value of µHK , T acts
locally freely on Z. In particular, Zt = ∅ if t *∈ Γ. Hence for t *∈ Γ, the map
κt
NH : H∗

T ((T ∗Cn)t) → H∗
T (Zt) is automatically 0. Hence κt

NH does not contribute
to the image of κNH , and image(κNH ) = image(κNH |NH∗,Γ

T (T∗Cn)). In particular,
κNH |NH∗,Γ

T (T∗Cn) is still surjective.

By Theorem 4.2, we may restrict our attention to the Γ-subring and the
restricted ring map κΓ

NH . The only remaining step to complete the proof of Theo-
rem 1.1 is the isomorphism of the inertial cohomology NH∗,#

T (Z) ∼= NH∗,Γ
T (Z) of
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the level set with the Chen–Ruan cohomology H∗
CR(M) of the quotient M = Z/T.

This would then imply that, in order to compute H∗
CR(M), it would suffice to com-

pute the domain and kernel of κΓ
NH . This explicit computation is done in Sec. 5. The

isomorphism NH∗,#
T (Z) ∼= H∗

CR(M) mentioned above, for a general stably complex
T -space with locally free T -action, is discussed in the compact case in [5, Sec. 4]; we
place a detailed proof and its connection to the obstruction bundle in the algebraic
geometry literature in the Appendix.

5. The Combinatorial Description of H∗
CR(M)

We now come to the main result of this manuscript. Using the inertial cohomology
surjectivity result of Sec. 4 and the identification of inertial cohomology with Chen–
Ruan orbifold cohomology in the Appendix, we give in this section an explicit
description of the Chen–Ruan orbifold cohomology of hypertoric varieties in terms
of the combinatorial data of the hyperplane arrangement H. Here H = {Hi}n

i=1

is a choice of simple affinization of the central arrangement Hcent determining the
hyperhamiltonian T -action on T ∗Cn, as detailed in Sec. 2. We then work out several
concrete examples in Sec. 6.

We begin by stating our main theorem; for this, we must first set some notation.
Let H be a simple rational cooriented weighted hyperplane arrangement. Suppose
that S ⊆ {1, 2, . . . , n} such that {aj}j∈Sc is linearly independent in td, where the
aj are integer normal vectors to the hyperplanes Hi. Then

ΓS :=
⋂

i∈S

ker(expλi) ⊆ T (5.1)

is a finite group. Let Γ be the finite subgroup in T generated by all such ΓS . For
an element t ∈ Γ, we define

S(t) := {i : (expλi)(t) = 1} ⊆ {1, 2, . . . , n}. (5.2)

Let t1, t2 ∈ Γ. We define the following subsets of {1, 2, . . . , n} :

A(t1, t2) := {i ∈ S(t1)c ∩ S(t2)c| aλi(t1t2) = 0},

B(t1, t2) :=
{

j ∈ S(t1)c ∩ S(t2)c

∣∣∣∣
aλi(t1t2) *= 0,
aλi(t1) + aλi(t2) − aλi(t1t2) = 0

}
, (5.3)

C(t1, t2) :=
{

k ∈ S(t1)c ∩ S(t2)c

∣∣∣∣
aλi(t1t2) *= 0,
aλi(t1) + aλi(t2) − aλi(t1t2) = 1

}
,

where aλ(t) is the logweight defined in Definition 3.2. Note that these sets partition
the set of indices corresponding to lines with nontrivial action by t1 and t2. With
this notation in place, we may state our main theorem.

Theorem 5.1. Let T ∗Cn be a hyperhamiltonian T -space given by restriction of
the standard hyperhamiltonian T n-action on T ∗Cn, where the inclusion T ↪→ T n

is determined by the combinatorial data of Hcent as in Sec. 2. Let H be a simple
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affinization of Hcent. Then for any regular value (α,αC) the Chen–Ruan orbifold
cohomology of the hyperkähler quotient M := T ∗Cn////(α,αC)T is given by

H∗
CR(M) ∼= Q[u1, . . . , un][{γt}t∈Γ]/I + J + K + 〈γid − 1〉,

where the ideals I,J ,K are defined as follows. First,

I =

〈
γt1γt2 − (−1)σt1t2




∏

i∈A(t1,t2)

u2
i








∏

j∈
B(t1 ,t2)%C(t1 ,t2)

uj



 γt1t2

∣∣∣∣ t1, t2 ∈ Γ
〉

where σt1t2 = |A(t1, t2)| + |B(t1, t2)|. Second,

J = 〈im(β∗)〉 .

Finally,

K =
∑

t∈Γ

〈
γt ·
∏

i∈Lt

ui

∣∣∣∣
⋂

i∈Lt

Hi ∩
⋂

j∈S(t)c

Hj = ∅
〉

,

where Lt denotes a (possibly empty) subset of S(t).

The proof of Theorem 5.1 involves three steps. First, we must show that the
subgroup generated by finite stabilizers defined in Sec. 4 is indeed the group Γ
generated by the ΓS in (5.1) above. Second, we prove that the ideals I,J above are
exactly the relations which yield the inertial cohomology NH∗,Γ

T (T ∗Cn). Finally,
we show that the ideal K exactly corresponds to the kernel of the inertial Kirwan
map ker(κΓ

NH ).
We begin with the first step, i.e. a description of the finite stabilizer group

Γ associated to the given T -action on T ∗Cn. As a bonus, we also give an (easy
to compute) description of the global orbifold structure groups that arise in the
quotient hypertoric variety. Let M = T ∗Cn////(α,αC)T , where the T -action on T ∗Cn

is determined by Hcent. We have the following.

Proposition 5.1. Let T ∗Cn be a hyperhamiltonian T -space given by restriction of
the standard hyperhamiltonian T n-action on T ∗Cn, where the inclusion T ↪→ T n

is determined by the combinatorial data of Hcent as in Sec. 2. Let {ai}n
i=1 be the

positive normal vectors defining the hyperplanes in Hcent and λi := ι∗ui as in (2.3).

(1) A subgroup of T is a finite stabilizer subgroup of a subvariety of T ∗Cn if and
only if it is of the form

ΓS :=
⋂

i∈S

ker(expλi) ⊆ T, (5.4)

where S ⊆ {1, 2, . . . , n} is such that {aj}j∈Sc is linearly independent in td. In
particular, the subvariety MS := T ∗CS////(α,αC)T has global orbifold structure
group ΓS.
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(2) The subgroup ΓS in (5.4) is isomorphic to
(
spanQ{aj}j∈Sc ∩ tdZ

) /
spanZ{aj}j∈Sc .

(3) Any finite stabilizer t ∈ T occurs in a ΓS for S such that {aj}j∈Sc forms a
basis of td.

Proof. We begin with a general computation. Let (z, w) ∈ T ∗Cn. Recall that the
action of the subtorus T ⊆ T n is given by composing the homomorphism

T → T n, t 1→ ((expλ1)(t), . . . , (expλn)(t)), (5.5)

with the standard linear action of T n on T ∗Cn. It is immediate that

Stab(z, w) = {t ∈ T : if eitherzi *= 0 or wi *= 0, then (expλi)(t) = 1} . (5.6)

Now define S(z, w) := {i|zi *= 0 or wi *= 0} . Then (5.6) becomes

Stab(z, w) =
⋂

i∈S(z,w)

ker(expλi). (5.7)

In particular, Stab(z, w) is finite if and only if the set {λi}i∈S(z,w) spans t∗, or
equivalently, the intersection ∩i∈S(z,w)ker(λi) = {0}. By the exactness of the
sequence (2.1), this is equivalent to the condition that {aj}j∈S(z,w)c is linearly
independent in td. Conversely, given a subset S with {aj}j∈Sc linear independent,
any (z, w) ∈ T ∗Cn such that zi = wi = 0 for i *∈ S, and zi *= 0 or wi *= 0 for
i ∈ S, will have stabilizer exactly ∩i∈Sker(expλi). Moreover, the argument above
immediately implies that MS has global orbifold structure group ΓS . This proves
the first claim.

To prove the second claim, we will produce a map ϕ from
(
spanQ{aj}j∈Sc ∩ tdZ

)

to T , which we will show takes values in ΓS . For the remainder of this computation,
we identify T with ker(β)/(ker(β)∩ tnZ) by (2.1) and S1 with R/Z. In this language,
[X ] ∈ T is in ΓS exactly when any representative X =

∑
i xiεi ∈ ker(β) of [X ] has

the property that xi ∈ Z for all i ∈ S. We begin by constructing the map ϕ. Let
y ∈ spanQ{aj}j∈Sc ∩ tdZ. Since spanZ{ai}n

i=1 = tdZ by assumption, there exist linear
combinations

y =
n∑

i=1

ciai, and y =
∑

j∈Sc

djaj , (5.8)

where ci ∈ Z, dj ∈ Q, and the second linear combination is unique. Let X =∑
i xiεi ∈ tn where

xk :=
{

ck if k ∈ S
ck − dk if k ∈ Sc.

Then by construction x represents an element in ΓS , and we define ϕ(y) := [x] ∈ T.
A different choice of Z-linear combination in (5.8) yields the same [x], so ϕ is
well-defined. Furthermore, by definition, if y ∈ spanZ{aj}j∈Sc ,ϕ(y) is trivial in
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T , so ϕ also factors through the quotient
(
spanQ{aj}j∈Sc ∩ tdZ

) /
spanZ{aj}j∈Sc .

The map ϕ preserves additive structures, hence is a homomorphism. Furthermore,
ϕ is an injection since if ϕ(y) ∈ ker(β) ∩ tnZ, then the coefficients dj in (5.8) are
integers, and hence y ∈ spanZ{aj}j∈Sc . Finally, to see that ϕ is surjective, let
X ∈ ker(β) be a representative for an element in ΓS , with coordinates ci for i ∈ S,
xj for j ∈ Sc. Then y :=

∑
i∈S ciai has the property that ϕ(y) = [X ], so ϕ is

surjective. Hence ϕ is an isomorphism, as desired.
Finally, since we always have

⋂

i∈S′

ker(expλi) ⊆
⋂

i∈S

ker(expλi)

for any S ⊆ S′, in order to identify the finite stabilizer elements in T , it suffices to
consider the minimal subsets S such that ∩i∈Skerλi = {0}, or equivalently, maximal
linearly independent sets {aj}j∈Sc , i.e. bases of td. This proves the final claim.

Thus, in order to compute Γ, it suffices to find the subsets {aj}j∈Sc in {ai}n
i=1

which form a basis of td. We also note that the subvarieties MS map under the
moment map for M to the intersection of the hyperplanes

⋂
j∈Sc Hj , so can easily

be identified in the combinatorial picture using H.
We now proceed to the second step, i.e. we describe the product structure on

NH∗,Γ
T (T ∗Cn).

Proposition 5.2. Let T ∗Cn be a hyperhamiltonian T -space given by restriction
of the standard hyperhamiltonian T n-action on T ∗Cn. Let NH∗,Γ

T (T ∗Cn) be the
Γ-subring of the inertial cohomology ring NH∗,#

T (T ∗Cn), and let λi := ι∗ui as
in (2.3). Then, as a graded H∗

T (pt; Q)-algebra,

NH∗,Γ
T (T ∗Cn) ∼= Q[u1, u2, . . . , un][{γt}t∈Γ]

/
I + J + 〈γid − 1〉,

where the ideal I is generated by the relations

γt1γt2 = (−1)|A(t1,t2)|+|B(t1,t2)|




∏

i∈A(t1,t2)

u2
i








∏

j∈B(t1,t2)'C(t1,t2)

uj



 γt1t2 , (5.9)

with the sets A(t1, t2), B(t1, t2), C(t1, t2) as defined in (5.3), and J = 〈im(β∗)〉.

Remark 5.1. The grading is given by deg ui = 2 for all i, and deg γt = 2age(t), as
specified in the Appendix.

Proof. Recall that the Γ-subring NH∗,Γ
T (T ∗Cn) is by definition given by

NH∗,Γ
T (T ∗Cn) :=

⊕

t∈Γ

H∗
T ((T ∗Cn)t).

Since each tth graded piece is the T -equivariant cohomology of a contractible
space, it has a single generator as a H∗

T (pt)-module. Let γt denote the element
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in NH∗,Γ
T (T ∗Cn) which is equal to 0 for each h-graded piece with h *= t, h ∈ Γ, and

which is equal to the generator 1 ∈ H∗
T ((T ∗Cn)t) ∼= H∗

T (pt) in the tth graded piece.
Then NH∗,Γ

T (T ∗Cn) is generated as a H∗
T (pt)-module by these {γt}t∈Γ. Hence in

order to determine the multiplicative structure, it suffices to find the product rela-
tions among these generators γt, t ∈ Γ. Also, by the exact sequence (2.1), we may
identify

H∗
T (pt; Q) ∼= H∗

T n(pt; Q)
/
J ∼= Q[u1, . . . , un]

/
J .

Since T ∗Cn is robustly equivariantly injective, we may compute all products
in terms of the - product instead of the * product, as was explained in Sec. 3.2.
By our assumptions on H, all the weights λi defining the action of T on T ∗Cn are
non-zero, and hence the only T -fixed point is the origin {0} ∈ T ∗Cn. The T -weights
of the action on the normal bundle ν(F, N) to F := (T ∗Cn)T = {0} are the 2n
weights {±λi}n

i=1. Since the weights come in pairs, the definition of the - product
yields

γt1 - γt2 = γt1t2 ·
n∏

i=1

((λi)aλi (t1)+aλi (t2)−aλi (t1t2) · (−λi)a−λi (t1)+a−λi (t2)−a−λi (t1t2)).

If i ∈ S(t1) ∪ S(t2), then either aλi(t1) = 0 or aλi(t2) = 0, and the corresponding
exponent is 0. Suppose i ∈ S(t1)c ∩ S(t2)c. We now take cases. Suppose that i ∈
A(t1, t2). In this case, a−λi(t)) = 1−aλi(t)) for either 0 = 1 or 2, aλi(t1)+aλi(t2) = 1
and the ith term in the product above is −λ2

i . Similar computations show that if
j ∈ B(t1, t2), then the jth term is equal to −λj , and if k ∈ C(t1, t2), then the
kth term is λk. Finally, given the identification of H∗

T (pt; Q) with H∗
T n(pt; Q)/J , a

representative of λi ∈ H2
T (pt; Q) is given by ui ∈ H2

T n(pt; Q).

The third and final step is to determine the kernel of the inertial Kirwan map
κΓ
NH . Since κΓ

NH = ⊕t∈Γκt
NH is a direct sum of maps κt

NH : NH∗,t
T ((T ∗Cn)t) →

NH∗,t
T (Zt) for t ∈ Γ, it suffices to compute the kernel of each κt

NH separately.
Suppose t ∈ Γ. Then, as observed in Sec. 4, κt

NH is the Kirwan map in usual
cohomology H∗(−; Q) for the hyperkähler Delzant construction of an orbifold
hypertoric variety. This map is known to be surjective and the kernel has been
explicitly computed. We quote the following.

Theorem 5.2 (Hausel–Sturmfels). Let T ∗Cn be a hyperhamiltonian T -space
given by restriction of the standard linear hyperhamiltonian T n-action on T ∗Cn,
where the inclusion T ↪→ T n is determined by the combinatorial data of Hcent as in
Sec. 2 and let H be a simple affinization of Hcent. Then the ordinary cohomology
ring of the orbifold hypertoric variety M = T ∗Cn////(α,αC)T is given by

H∗(M ; Q) ∼= Q[u1, . . . , un]
/

J +

〈
∏

i∈L

ui

∣∣∣∣
⋂

i∈L

Hi = ∅
〉

, (5.10)

where L denotes a subset of {1, 2, . . . , n}.
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We will apply Theorem 5.2 to the hyperhamiltonian action of T on T ∗CS(t) for
each t ∈ Γ. Since the expression in (5.10) uses the combinatorial data of the hyper-
plane arrangement corresponding to this action, our first task will be to describe
explicitly the arrangement Ht for each t ∈ Γ in terms of the original H. Since the
T -action is defined as a restriction of the original T -action on T ∗Cn, the action on
T ∗CS(t) is given by the composition ιt := πt ◦ ι,

t
ι !!

ιt

""
tn

πt !! tS(t)

where ι is the inclusion coming from the original Delzant sequence (2.1), and πt is
the natural projection to the subspace, given by εi 1→ [εi], ∀i ∈ S(t), εj 1→ 0, ∀j ∈
S(t)c. A simple linear algebra argument together with the commuting diagram

0 !! t
ι !!

ιt

##"""""""""""""" tn
β !!

πt

$$

td=n−k

$$
tS(t) ∼= tn

/
span 〈εi〉i∈S(t)c

βt !! td
/
span 〈ai〉i∈S(t)c

(5.11)

(where the top exact sequence is that in (2.1), the right vertical arrow is the natural
projection, and βt is the composition of β with the natural projection) shows that
the map ιt fits into the exact sequence

0 !! t
ιt !! tS(t)

βt !! td
/
span 〈ai〉i∈S(t)c

!! 0. (5.12)

From this sequence, we will be able to deduce the structure of the arrangement
Ht. We note, however, the sequence (5.12) is not necessarily a standard Delzant
exact sequence as in Sec. 2. This is because it is possible to have βt([εi]) = 0
for some i ∈ S(t), whereas this does not occur for a standard Delzant construc-
tion. This poses no serious problems, as will be discussed in more detail later. The
relevant combinatorial data must therefore be contained in the non-zero images,
[ai] *= 0, i ∈ S(t).

Using (5.12), we may now explicitly describe the hyperplane arrangement Ht

for t ∈ Γ. First, Ht sits naturally in the dual of the Lie algebra td
/
span 〈aj〉j∈S(t)c ,

which is a subspace of (td)∗. Specifically, it is the annihilator of the |S(t)c|-
dimensional subspace span 〈aj〉j∈S(t)c . Hence, up to an affine translation, it may
be identified with the intersection

⋂

j∈S(t)c

Hj ⊆ (td)∗, (5.13)

where Hj is the hyperplane orthogonal to aj in the original hyperplane arrange-
ment H. Moreover, by analyzing the dimensions of T d-orbits in the subvariety
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MS(t) ⊆ M , it is straightforward to see that the affine hyperplanes in Ht are
exactly given by the intersections

Hi ∩
⋂

j∈S(t)c

Hj ⊆
⋂

j∈S(t)c

Hj , (5.14)

where i ∈ S(t) such that ai *∈ span 〈aj〉j∈S(t)c .
The only indices i ∈ S(t) which give non-empty hyperplanes in Ht are those for

which [ai] = β([εi]) *= 0. Thus, in addition to the standard Delzant construction
for Ht with certain basis vectors [εi] mapping to the corresponding normal vector
[ai] *= 0 defining a hyperplane in Ht, we have in this case also some extra basis
elements corresponding to the i ∈ S(t) for which β[εi] = 0. This poses no problems,
because any such extra indices correspond to a subtorus of T acting standardly on a
quaternionic affine space, the moment map for which has level sets precisely equal
to group orbits and hence has trivial hyperkähler quotient. In particular, the addi-
tion of such extra indices leaves the corresponding hypertoric variety topologically
unchanged, allowing us (with only slight modifications) to use the known theorems
for hypertoric varieties built via a standard Delzant construction.

We have the following proposition.

Proposition 5.3. Let T ∗Cn be a hyperhamiltonian T -space given by restriction of
the standard hyperhamiltonian T n-action on T ∗Cn, where the inclusion T ↪→ T n is
determined by the combinatorial data of Hcent as in Sec. 2, and let H be a simple
affinization of Hcent. Let t ∈ Γ. Then the ordinary cohomology of the hypertoric
subvariety MS = T ∗CS(t)////T is given by

H∗(MS ; Q) ∼= Q[u1, u2, . . . , un]/J + Kt,

where

Kt =

〈
∏

i∈Lt

ui

∣∣∣∣
⋂

i∈Lt

Hi ∩
⋂

j∈S(t)c

Hj = ∅
〉

, (5.15)

where Lt denotes a (possibly empty) subset of S(t), and J = 〈im(β)∗〉 .

Proof. We begin by observing that the domain H∗
T (T ∗CS(t)) ∼= H∗

T (pt) of the map
κt
NH may also be identified as H∗

T n(pt)
/
〈im(β∗)〉 ∼= Q[u1, u2, . . . , un]

/
〈im(β∗)〉 ,

by (2.1).
A subtlety that arises here is the presence of global stabilizers for the T -action

on the subsets (T ∗Cn)t = T ∗CS(t) for t ∈ Γ a non-trivial finite stabilizer. Clearly,
if t *= id, then by definition (T ∗Cn)t has some non-trivial global stabilizer Γt.
Hence the T -action on T ∗CS(t) is not effective and in particular does not arise
from a standard Delzant construction (since any such is effective). However, since
Γt is finite, T/Γt is again a torus of dimension dim(T ), and the inclusion maps on
the level of Lie algebras are identical. The same holds at the level of cohomology
rings, and hence the computation with global finite stabilizer is identical to the
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computation in the usual hyperkähler Delzant construction. (Put another way, the
essential data for the computation is in the maps on Lie algebras.)

Putting together the description given in (5.13) and (5.14) of the hyperplane
arrangement Ht associated to (5.12), Theorem 5.2, and the commutative dia-
gram (5.11), we see that the kernel of κt

NH is generated by the relations given
in (5.15). Note that if i ∈ S(t) such that β[εi] = 0, then

Hi ∩
⋂

j∈S(t)c

Hj = ∅,

so ui ∈ Kt. Finally, we observe that if ∩j∈S(t)cHj = ∅ (for instance, if t ∈ Γ is not a
finite stabilizer) then κt

NH ≡ 0 since in this case Zt = ∅. This in particular implies
that we must have γt ∈ Kt, which is implied by our convention that we can take
Lt = ∅ in the relations above and hence γt · 1 = γt ∈ Kt. The result follows.

We may now prove our main theorem, which gives a full combinatorial descrip-
tion of the Chen–Ruan orbifold cohomology of the orbifold hypertoric variety M .

Proof of Theorem 5.1. We will give a description of the Chen–Ruan orbifold
cohomology of M as a quotient of NH∗,Γ

T (T ∗Cn) by the kernel of κΓ
NH . From Propo-

sition 5.2, we have already seen that NH∗,Γ
T (T ∗Cn) can be written as

NH∗,Γ
T (T ∗Cn) ∼= Q[u1, u2, . . . , un][{γt}t∈Γ]

/
I + J + 〈γid − 1〉 .

Thus it remains to describe each piece of the kernel, K = ker(κΓ
NH ) =⊕

t∈Γ ker(κt
NH ). Proposition 5.3 implies that γt - Kt ⊆ K where Kt is defined

in (5.15) and is here considered as an ideal in NH∗,id
T (T ∗Cn). Note that γt - Kt

is a subset of the tth graded piece NH∗,t
T (T ∗Cn).

This concludes the proof except for one subtlety: in Proposition 5.3, we described
ideal generators for Kt with respect to the standard ring structure of Borel-
equivariant cohomology, whereas in Theorem 5.1, we present generators with respect
to the - (or equivalently *) product on NH∗,Γ

T (T ∗Cn). Thus, given generators in
the standard product, it is not immediate that their union (multiplied by appro-
priate γt) would yield ideal generators for K in the - product. However, the id-
graded piece NH∗,id

T (T ∗Cn) ∼= H∗
T (pt) is a subring of NH∗,Γ

T (T ∗Cn) in the -
product, and multiplication in the - product of elements in NH∗,id

T (T ∗Cn) and
NH∗,t

T (T ∗Cn) agrees with the standard H∗
T (pt)-module structure on H∗

T ((T ∗Cn)t)
in Borel-equivariant cohomology. Since Theorem 5.2 gives H∗

T (pt)-module genera-
tors for each Kt, the result follows.

6. Examples

We compute several explicit examples in this section to illustrate our methods.
Throughout, we identify Lie algebras with their dual spaces using the standard
inner product. When illustrating the hyperplane arrangements, we will shade the
intersection of the positive half-spaces corresponding to the cooriented hyperplanes.
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6.1. A hyperkähler analogue of an orbifold P2

We begin with an example in which the corresponding Kähler toric variety is an
orbifold P2. Let H be the hyperplane arrangement depicted in Fig. 1 and denote
the corresponding hypertoric variety by M . In this example, n = 3, d = 2, k = 1.
Here we will take the normal vectors to the hyperplanes to be primitive.

With respect to the standard bases in t3 and t2, the map β in (2.1) is given by

β =
[

1 0 −2
0 1 −1

]
,

where the ith column is the vector ai normal to the ith hyperplane in Fig. 1. By
Proposition 5.1, the single orbifold point maps to the intersection of the hyperplanes
H2 and H3. The kernel of β is given by the span of the single vector (2, 1, 1) in
t3. Hence the S1-action on T ∗C3 with respect to which we take a hyperkähler
quotient is induced by the linear action of S1 on C3 with weights 2, 1, 1 on the three
coordinates, respectively. In particular, it is immediate that the finite stabilizer
subgroup Γ is just {±1} ∼= Z/2Z. We compute the following table of logweights;
the quantity 2age(t) is the degree of the corresponding generator as in (A.5).

t a2(t) a1(t) a1(t) 2 age(t)
Generator of
NH∗,t

S1 (T ∗C3)
id 0 0 0 0 γid

−1 0 1
2

1
2 4 γ−1

(6.1)

2

3

1

Fig. 1. An example of an orbifold hypertoric variety obtained by reducing H3 by S1. The corre-
sponding Kähler toric variety is a P2 with a single orbifold point, which maps to H2 ∩ H3.
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Since there is only one non-trivial generator γ−1 in NH∗,Γ
S1 (T ∗C3) as a H∗

S1(pt)-
module, we only need to compute a single relation of the form (5.9), namely, the
product of γ−1 with itself. Since t2 = id = 1 for t = −1, we also have

A(−1,−1) = {2, 3}, B(−1,−1) = ∅, C(−1,−1) = ∅,

as can be computed from the definitions (5.3), and so we have

γ2
−1 − u2

2u
2
3 ∈ I.

The ideal J of linear relations can be deduced from the matrix of β to be

J = 〈u1 − 2u3, u2 − u3〉 .

Finally, the ideal K = ker(κΓ
NH ) may be computed via the two pieces

ker(κid
NH ), ker(κ−1

NH ). We have from Proposition 5.3 that

Kid = 〈u1u2u3〉 , and K−1 = 〈γ−1u1〉 ,

from which we conclude that

H∗
CR(M) ∼= Q[u1, u2, u3, γid, γ−1]

/〈
γ2
−1 − u2

2u
2
3, u1 − 2u3, u2 − u3,

u1u2u3, γ−1u1, γid − 1

〉
,

which is easily shown to be isomorphic to

H∗
CR(M) ∼= Q[u, γ]

/〈
u3, γ2, γu

〉
,

where deg(u) = 2, deg(γ) = 4. From this it is straightforward to compute that the
orbifold Poincaré polynomial for M is given by

Porb(t, M) = 1 + t2 + 2t4,

so the orbifold Euler characteristic is 4.

Remark 6.1. Let Mn denote the hypertoric variety associated to the more general
case in which a3 = (−n,−1) (so the above case is n = 2). The underlying Kähler
toric variety is a weighted P2 with a single orbifold point with orbifold structure
group Z/nZ. An analogous computation yields the orbifold Poincaré polynomial

Porb(t, Mn) = 1 + t2 + nt4,

so Mn has orbifold Euler characteristic n + 2.

6.2. A quotient of T ∗C4 by a T 2

We continue with an example in which the corresponding Kähler toric variety is
a smooth P2, but now we add an extra hyperplane which introduces an orbifold
point in the hypertoric variety. Let H be the hyperplane arrangement depicted in
Fig. 2 and denote by M the corresponding hypertoric variety. In this example,
n = 4, d = 2, k = 2. We take primitive normals to these hyperplanes.



August 26, 2008 16:32 WSPC/133-IJM 00494

950 R. Goldin & M. Harada

1

3

4

2

Fig. 2. An example of an orbifold hypertoric variety obtained by reducing H4 by T 2. The inter-
section H3 ∩ H4 corresponds to the orbifold point.

The map β is given by the matrix

β =



 1 0 −1 −1

0 1 −1 1



 .

By Proposition 5.1, the single orbifold point maps to the intersection of the hyper-
planes H3 and H4. The kernel of β is given by the Lie subalgebra tk = t2 ⊆ t4 given
by the span of the vectors (1, 1, 1, 0) and (1,−1, 0, 1) in t4 ∼= R4. Therefore, the
T -action on T ∗C4 with respect to which we take a hyperkähler quotient is given by

(t1, t2) · (z, w) = (t1t2z1, t1t
−1
2 z2, t1z3, t2z4, t

−1
1 t−1

2 w1, t
−1
1 t2w2, t

−1
1 w3, t

−1
2 w4),

where z = (z1, z2, z3, z4), w = (w1, w2, w3, w4), and here we have chosen an identi-
fication of the kernel of exp(β) with the standard 2-torus T 2.

The finite stabilizer group Γ may now be computed as follows. The weights
{λi}4

i=1 for the T 2-action are given by λ1 = (1, 1),λ2 = (1,−1),λ3 = (1, 0),λ4 =
(0, 1). The only minimal spanning subset which leads to a non-trivial stabilizer is
{λ1,λ2}, and the stabilizer subgroup is generated by the element (−1,−1) ∈ T 2.
Hence Γ ∼= Z/2Z. Then immediately S(id) = {1, 2, 3, 4} and S ((−1,−1)) = {1, 2}.
We will also use the following table.

t a(1,1)(t) a(1,−1)(t) a(1,0)(t) a(0,1)(t) 2 age(t)
Generator of
NH∗,t

T (T ∗C4)
id 0 0 0 0 0 γid

(−1,−1) 0 0 1
2

1
2 4 γ(−1,−1)

(6.2)

As in the previous example, we only need to compute a single relation of the
form (5.9), namely, the product of γ(−1,−1) with itself. We have

A((−1,−1), (−1,−1)) = {3, 4},
B((−1,−1), (−1,−1)) = ∅,
C((−1,−1), (−1,−1)) = ∅,
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and so

γ2
(−1,−1) − u2

3u
2
4 ∈ I.

The ideal of linear relations is

J = 〈u1 − u3 − u4, u2 − u3 + u4〉 .

Again as in the previous example, the ideal K = ker(κΓ
NH ) may be computed via

the two pieces ker(κid
NH ), ker(κ(−1,−1)

NH ). We have

Kid = 〈u2u3u4, u1u3u4, u1u2u4, u1u2u3〉 , and
K(−1,−1) =

〈
γ(−1,−1)u1, γ(−1,−1)u2

〉
.

We conclude

H∗
CR(M) ∼= Q[u1, u2, u3, u4, γid, γ(−1,−1)]/I

where

I =

〈γ2
(−1,−1) − u2

3u
2
4, u1 − u3 − u4, u2 − u3 + u4,

u1u3u4, u2u3u4, u1u2u3, u1u2u4

γ(−1,−1)u1, γ(−1,−1)u2, γid − 1

〉
.

This simplifies to

H∗
CR(M) ∼= Q[u1, u2, γ]

/〈
γ2, u3

1, u
3
2, u1u

2
2, u

2
1u2, γu1, γu2

〉
.

Here, deg(ui) = 2, deg(γ) = 4. We see that the orbifold Poincaré polynomial is

Porb(t, M) = 1 + 2t2 + 4t4,

so the orbifold Euler characteristic is 7.

Appendix A: Inertial Cohomology and Chen–Ruan Cohomology

In this section, we show that there is a natural equivalence between the inertial
cohomology of a stably complex space Z from Sec. 3 and the orbifold cohomology
of Z/T when T acts locally freely, i.e. that there exists a graded ring isomorphism

NH∗,#
T (Z) ∼= H∗

CR(Z/T ). (A.1)

Applying this isomorphism to the case when Z is a level set of the hyperkähler
moment map on T ∗Cn and M = Z/T is an orbifold hypertoric variety completes
the proof of Theorem 1.1. (There is a proof of a similar statement in [5], but here
we drop their compactness assumption.) In addition, we show that the definition of
the product structure for NH∗,#

T (Z) is also equivalent to another description used
in the algebraic-geometry literature (e.g. [4, 2]).

We first prove (A.1) as additive groups. We simplify the presentation in [3] to
the case when the group involved is abelian, and X = Z/T . Let Xt := {(p, t) :
p ∈ Z/T, t ∈ Gp}, where Gp is the local orbifold structure group at the point
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p ∈ Z/T . We assume for simplicity that Xt is connected (if not, take a direct sum
over connected components). By definition,

Hd
CR(X) :=

⊕

t∈T

Hd−2σt(Xt), (A.2)

where the degree shift σt is constant on connected components, and is defined
below. Since in our case X = Z/T is a global quotient, each Gp is a subgroup of
T and Xt = {(zT, t) : zT ∈ Z/T, t ∈ Stab(z)}. In other words, Xt = Zt/T, where
Zt := {(z, t) : z ∈ Z, t ∈ Stab(z)} and the T -action is on the first coordinate.
Notice that, for a given t ∈ T , Zt

∼= Zt := {z ∈ Z : t · z = z}. Since T acts locally
freely on Z, it certainly acts locally freely on Zt. Therefore, H∗(Zt/T ) ∼= H∗

T (Zt)
(with Q coefficients) and

Hd
CR(Z/T ) ∼=

⊕

t∈T

Hd−2σt
T (Zt) (A.3)

as additive groups. The right-hand side of (A.3) is exactly the definition of
NH∗,#

T (Z), so we have proved the additive isomorphism (A.1).
We now prove that the isomorphism (A.1) also preserves the grading. The num-

ber σt appearing in (A.2) is obtained as follows; we assume Xt *= ∅. At any point
p ∈ X, let ρp : Gp → GL(k, C) be a representation specifying a local model Ck/Gp

at p. Since Gp is abelian, the image of ρp is simultaneously diagonalizable; denote
by {aλj (t)}k

j=1 the logweights of the eigenvalues of ρp(t), t ∈ Gp. The sum

σt :=
k∑

j=1

aλj (t) ∈ Q (A.4)

is well-defined, constant on connected components of Xt, and gives the degree shift
in [3] and (A.2).

We now show that this degree shift encoded by σt agrees with the degree shift in
the definition of the grading for inertial cohomology in [5]. The local model Ck/Gp

can also be obtained by looking at the original T -space Z. Namely, given a lift z
of the point p ∈ X, Gp is exactly Stab(z) ⊆ T and the representation ρp above is
given by the action of Gp on the normal bundle ν(T · z, Z) in TzZ. Moreover, since
t acts trivially on Zt, the only nontrivial eigenvalues of ρp(t) are those which occur
in the representation of 〈t〉 on a further quotient ν(Zt, Z). In particular one may
conclude that the sum (A.4) equals the sum

age(t) :=
∑

Cλ⊂ν(Zt,Z)

aλ(t). (A.5)

Even if X is not compact, the grading shift is well defined (as long as X is finite-
dimensional). In particular, the normal bundle ν(Zt, Z) does not degenerate as it
goes out to infinity. This shows that the gradings agree.

We have left to show that the isomorphism (A.1) preserves the ring structure.
The products on both NH∗,#

T (Z) and H∗
CR(X) are defined using the notion of an
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obstruction bundle, so we begin by showing that the obstruction bundle of Def-
inition 3.3, defined upstairs on Z, descends to the obstruction bundle of Chen
and Ruan, defined on the quotient X = Z/T. In their original paper [3], the
authors define these bundles over 3-twisted sectors; however, their construction
can be greatly simplified in the case of a global quotient X = Z/T, so we restrict
attention to this case below.

Chen and Ruan define their obstruction bundle using two ingredients; we
describe each in turn. Consider a point [z] ∈ X = Z/T, and suppose that
t1, t2 ∈ G[z] ⊆ T. Let H := 〈t1, t2〉 be the finite subgroup they generate. Let

X(t1,t2,t3) := {(p, t1, t2, t3) : p ∈ X, t1, t2, t3 ∈ Gp, t1t2t3 = 1}.

Then there is a smooth map e : X(t1,t2,t3) → X projecting to the first term. Let
e∗TX be the pullback of the tangent bundle; this is a complex H-equivariant orbi-
bundle over X(t1,t2,t3) and is the first ingredient in the Chen–Ruan definition of the
obstruction bundle.

The second ingredient involves only the subgroup H . Let Σ = (Σ, t1, t2, t3, H)
be a proper smooth Galois H cover of P1 branched over {0, 1,∞} (for details see
[4, Appendix]). The H-action on Σ induces an H-action on H1(Σ,OΣ), so we may
define the topologically trivial H-equivariant bundle with fiber H1(Σ,OΣ) over
X(t1,t2,t3) of complex rank genus(Σ), where the H-action is only on the fiber. We
denote this bundle by H1(Σ,OΣ). Then the obstruction bundle of Chen and Ruan
is given by the H-invariant part of the tensor product of these two bundles, i.e.

E := (H1(Σ,OΣ) ⊗ e∗TX)H . (A.6)

We now wish to show that the obstruction bundle of Definition 3.3 descends
to (A.6). As a first step, observe that X(t1,t2,t3) is isomorphic to ZH/T , so the
base spaces of the two bundles certainly correspond. One reasonable way to lift the
bundle might be to replace e∗TX with e∗TZ in the Chen–Ruan definition. However,
this tangent bundle is not complex. Since a fiber (e∗TX)[z] of the orbi-bundle e∗TX
can be constructed via T -equivalence classes in ν(T · z, Z), a natural idea would
be to split e∗TZ at any point z into the tangent directions along the orbits (which
should not contribute), and its (complex) quotient bundle, ν(T ·z, Z). Alternatively,
one can split e∗TZ into the tangent directions TZH along the fixed point set, and
its (complex) quotient ν(ZH , Z). In either case, TZH (or its quotient in ν(T ·z, Z))
does not contribute to the obstruction bundle, since

(H1(Σ,OΣ) ⊗ TZH)H = H1(Σ,OΣ)H ⊗ TZH = H1(CP 1,OCP 1) ⊗ TZH = 0.

(A.7)

Thus only the normal bundle ν(ZH , Z) contributes, and we see that

Ẽ := (H1(Σ,OΣ) ⊗ ν(ZH , Z))H → ZH (A.8)

quotients to E. Note that ν ∗ (ZH , Z) is well-defined, even if ZH is not compact.
ZH is a closed submanifold containing as a submanifold the orbit through z; thus
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ν(ZH , Z) is a quotient of a local model on ν(T · z, Z) of the representation down-
stairs.

It remains to show that the only H-invariant subspaces of ν(ZH , Z) which
contribute to (A.8) are the H-isotypic components Cλ ⊆ Iλ ⊆ ν(ZH , Z) with
aλ(t1) + aλ(t2) + aλ(t3) = 2. We analyze each piece Cλ separately. We use Čech
cohomology to compute with the H1(Σ,OΣ), so let U = {Ui}i∈I be an H-invariant
open cover of Σ, i.e. for every σ ⊆ I there exists τ such that h ·Uσ = Uτ . We denote
this by h · σ = τ for simplicity.

We claim that for z ∈ ZH , the fiber (Cλ ⊗ H1(Σ,OΣ))H is isomorphic as a
C-vector space to H1(Σ,Lλ), where Lλ is the sheaf of H-invariant sections of the
topologically trivial H-equivariant line bundle Lλ = Σ × Cλ over Σ. This can be
seen at the level of cochains by the map

φ : (Cλ ⊗ C)(U ,OΣ))H !! C)(U ,Lλ)
z ⊗ s ! !! zs.

It is straightforward to check that φ is well-defined and an isomorphism using the
definition of the H-action on Cλ ⊗ C)(U ,OΣ), which can be written, for σ ⊆ I,

(h · (z ⊗ s)) |σ = e2πiaλ(h)z ⊗ s|h−1σ.

It may also be checked that φ commutes with the Čech differential, so (Cλ ⊗
H1(Σ,OΣ))H ∼= H1(Σ,Lλ), as desired.

Furthermore, it is shown in [2] that H1(Σ,Lλ) ∼= H1(P1,O(−aλ(t1) − aλ(t2) −
aλ(t3))). The latter is 1-dimensional exactly when the sum inside is −2 and 0-
dimensional otherwise, so (Cλ ⊗ H1(Σ,OΣ))H contributes nontrivially to Ẽ if and
only if aλ(t1) + aλ(t2) + aλ(t3) = 2. As a bundle, each of these contributions is
a line bundle over ZH given as a sub-bundle of ν(ZH , Z), since by construction
H1(Σ,OΣ) is the trivial bundle over ZH . We conclude that

Ẽ ∼=
∑

Iλ⊆ν(ZH ,Z)
aλ(t1)+aλ(t2)+aλ(t3)=2

Iλ,

where Iλ is the isotypic component of ν(ZH , Z) of weight λ.
Finally, under the isomorphism H∗

T (ZH) ∼= H∗(ZH/T ), the equivariant Euler
class eT (Ẽ) is mapped to the ordinary Euler class e(E) ∈ H∗(ZH/T ). The *-
product is then constructed to be identical to the definition given in [3]. We have
proven (A.1), which we record as follows.

Theorem A.1. The inertial cohomology NH∗,#
T (Z) is isomorphic as a graded ring

to the orbifold cohomology H∗
CR(M).

We now prove the correspondence of our definition of the obstruction bundle
with a description in terms of right derived functors used in the algebraic geometry
literature (e.g. [2, 4]). For this exercise, it is convenient to use the description
in (A.8). In the algebraic-geometric context, the definition of the obstruction bundle
(in the case of a global quotient by a locally free action) over ZH is given as
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R1πH
∗ (π∗TZ|ZH ), where Σ, H are as above, π : ZH × Σ → ZH is the projection,

πH
∗ is the functor “pushforward and take H-invariants”, and R1πH

∗ is its first right
derived functor. By an argument similar to (A.7), only the normal bundle ν(ZH , Z)
contributes nontrivially to this bundle, so R1πH

∗ (π∗TZ|ZH ) = R1πH
∗ (π∗ν(ZH , Z)).

We will work with this second description; in particular, we will show that in our
(not necessarily algebraic) context, the right-hand side of this equation is equal to
our bundle (A.8).

We begin by computing R1π∗(π∗ν(ZH , Z)). The sheaf of sections of π∗ν(ZH , Z)
is a OZH×Σ-module, where OZH×Σ is the sheaf of smooth functions on ZH ×Σ that
are holomorphic restricted to any fiber of π. By the push-pull formula,

R1π∗(π∗ν(ZH , Z)) = ν(ZH , Z) ⊗ R1π∗(OZH×Σ).

Moreover, the pushforward sheaf π∗(OZH×Σ) can be described as

π∗(OZH×Σ) = OZH ⊗ Γ(Σ,OΣ),

where here OZH is the sheaf of smooth functions on ZH and OΣ is the (usual)
sheaf of holomorphic functions on Σ. This implies that R1π∗(OZH×Σ) = OZH ⊗
H1(Σ,OΣ), so we finally have

R1πH
∗ (π∗ν(ZH , Z)) =

(
ν(ZH , Z) ⊗ H1(Σ,OΣ)

)H → ZH ,

as desired.
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