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(Communicated by Rebecca Herb)

Abstract. Let Oλ be a generic coadjoint orbit of a compact semi-simple Lie
group K. Weight varieties are the symplectic reductions of Oλ by the maximal
torus T in K. We use a theorem of Tolman and Weitsman to compute the
cohomology ring of these varieties. Our formula relies on a Schubert basis of
the equivariant cohomology of Oλ, and it makes explicit the dependence on λ
and a parameter in Lie(T )∗ =: t∗.

1. Introduction

Let K be a compact semisimple Lie group, T ⊂ K a maximal torus and t ⊂ k
their Lie algebras. Pick a fundamental chamber in t∗ and a point λ in the interior.
Let Oλ be the orbit of λ under the coadjoint representation of K on k∗. Oλ is
diffeomorphic to the flag variety K/T , and it has a naturally occurring symplectic
form ω known as the Kirillov-Kostant-Souriau form. The action of T on Oλ is
Hamiltonian, which means that there is an invariant map

Φ : Oλ → t∗

satisfying ω(Xη, ·) = dΦη, where η ∈ t, Xη is the vector field on Oλ generated by
η, and Φη(m) = Φ(m)(η) is defined by the natural pairing between t and t∗. We
call Φ a moment map for this action.

The image of Φ is the convex hull of W · λ, the Weyl group orbit of λ. Let
µ ∈ Φ(Oλ) be a regular value of Φ. We define the symplectic reduction at µ by

Φ−1(µ)/T = Oλ//T (µ).

The goal of this note is to give a presentation of the cohomology1 ring of
Oλ//T (µ) in terms of the root system of K. We present H∗(Oλ//T (µ)) as a quo-
tient of the T -equivariant cohomology ring H∗

T (Oλ) by a certain ideal. We rely on
the following fundamental result.
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Theorem 1.1 (Kirwan). Let M be a compact symplectic manifold with a Hamil-
tonian T action, where T is a compact torus. If µ ∈ t∗ is a regular value of Φ, then
the restriction map in equivariant cohomology,

κ : H∗
T (M) → H∗

T (Φ−1(µ)),

is surjective.

Since the T action is locally free on level sets of the moment map at regu-
lar values, H∗

T (Φ−1(µ)) = H∗(M//T (µ)). The resulting map κ : H∗
T (M) →

H∗(M//T (µ)) is called the Kirwan map. Kirwan’s result is of particular importance
because the equivariant cohomology can be described in terms of the equivariant
cohomology of the fixed point sets of the T action. In the case of isolated fixed
points, this is just a sum of polynomial rings.

Theorem 1.2 (Kirwan). Let M be a compact Hamiltonian T -space. Let MT denote
the fixed point set of the T action. The restriction map

i∗ : H∗
T (M) → H∗

T (MT )

is injective. In the case that MT is a finite set of points,

H∗
T (MT ) =

⊕

p∈MT

Q[x1, . . . , xn]

where n = dimT .

A presentation of the cohomology ring of the reduced space M//T (µ) can be
obtained by using the following description of the kernel of the Kirwan map, which
is due to Tolman and Weitsman [TW]. If α is in H∗

T (M) we denote

supp(α) = {p ∈ MT : α|p $= 0}.

Fix an arbitrary inner product 〈 , 〉 on t∗.

Theorem 1.3 (Tolman-Weitsman). The kernel of the Kirwan map κ is the ideal
of H∗

T (M) generated by all α ∈ H∗
T (M) with the property that there exists ξ ∈ t∗

such that
Φ(supp(α)) ⊂ {x ∈ t∗|〈ξ, x〉 ≤ 〈ξ, µ〉}.

In other words, kerκ consists of sums of equivariant cohomology classes α with the
property that all points of supp(α) are mapped by Φ to the same side of an affine
hyperplane in t∗ that passes through µ.

The T -equivariant cohomology ring of the coadjoint orbit Oλ = K/T is well
understood. Kostant and Kumar constructed in [KK] a basis {xw}w∈W of H∗

T (K/T )
as a H∗

T (pt)-module, which we refer to as the Schubert basis. Let B be a Borel
subgroup in G := KC, and let B− be the opposite Borel subgroup. For any v ∈ W ,
let Xv = B−ṽB/B, where ṽ is any choice of lift of v ∈ W in the normalizer of
the torus. These opposite Schubert varieties are T -invariant subvarieties of G/B ∼=
K/T . The basis {xw} is uniquely defined by the property that

∫

Xv

xw = δvw.

Theorem 1.2 suggests the importance of knowing how to restrict the classes xw to
fixed points W · λ. This formula was worked out for general K by S. Billey [Bi]. In
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particular, it is easy to show that xw|v = 0 if v $≤ w in the Bruhat order.2 In other
words,

supp(xw) = {vλ : v ≤ w}.

To each τ ∈ W we can associate the new basis

{xτ
w = τ · xτ−1w}w∈W ,

whose elements have the property

supp(xτ
w) = {vλ : τ−1v ≤ τ−1w}.

Let λ1, . . . , λl ∈ t∗ denote the fundamental weights associated to the chosen
fundamental chamber of t∗. Let 〈 , 〉 be the restriction to t∗ of a K-invariant
product on k∗. Our main result is:

Theorem 1.4. The cohomology ring H∗(Oλ//T (µ)) is isomorphic to the quotient
of H∗

T (K/T ) by the ideal generated by

{xτ
v : there exists j such that 〈λj , τ

−1vλ〉 ≤ 〈λj , τ
−1µ〉}.

Remark 1. One can take the description of H∗
T (K/T ) (see, for instance, [Br]) and

deduce a precise presentation of the cohomology ring H∗(Oλ//T (µ)) in terms of
generators and relations.

Remark 2. For K = SU(n) this result was proven by the first author in [Go1].

2. Primary description of kerκ

For any ξ ∈ t∗ we denote by fξ the corresponding height function on Oλ,

fξ(x) = 〈ξ, x〉.

Under the pairing between t∗ and t, the function fξ is a component of the moment
map. In fact, it is well known that fξ is Morse-Bott for all ξ ∈ t∗. Denote by C ⊂ t∗

the fundamental (positive) Weyl chamber, which can be described by

C = {r1λ1 + · · · + rlλl : all rj > 0},

and let C be its closure.

Lemma 2.1. Let τ be in W and ξ in τC. If τ−1v < τ−1w in the Bruhat order,
then fξ(vλ) ≤ fξ(wλ).

Proof. The result follows immediately from the fact that if ξ ∈ C, then the unstable
manifold of fξ through vλ with respect to the Kähler metric on

Oλ = K/T = G/B

is just the Bruhat cell B · vB/B (see, for instance, [Ko]). !

2The class xw differs from the ξw constructed in [KK] by the relationship xw := w0 · ξw0w,
where w0 is the longest element of W .
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The main result of this section is:

Theorem 2.1. Suppose that α ∈ H∗
T (Oλ) has the property that

Φ(supp(α)) ⊂ {x ∈ t∗ : 〈ξ, x〉 ≤ 〈ξ, µ〉}.

Then α can be decomposed as

α =
∑

w∈W

aτ
wxτ

w

with aτ
w ∈ H∗

T (pt), such that if aτ
w $= 0, then

Φ(supp(xτ
w)) ⊂ {x ∈ t∗ : 〈ξ, x〉 ≤ 〈ξ, µ〉}.

Proof. Take τ ∈ W such that ξ ∈ τC. Suppose that the decomposition of α with
respect to the basis {xτ

w}w∈W is of the form

(1) α =
∑

w∈W

aτ
wxτ

w + aτ
v1

xτ
v1

+ · · · + aτ
vr

xτ
vr

,

where the first sum contains only w with

〈ξ, wλ〉 ≤ 〈ξ, µ〉,

whereas
〈ξ, vjλ〉 > 〈ξ, µ〉, aτ

vj
∈ S(t∗), aτ

vj
$= 0,

for any 1 ≤ j ≤ l. We may assume that v1 has the property that there exists no
j > 1 with τ−1v1 < τ−1vj . Now let us evaluate both sides of (1) at v1λ. Since

〈ξ, wλ〉 ≤ 〈ξ, µ〉 < 〈ξ, v1λ〉,

by Lemma 2.1 we must have
xτ

w|v1λ = 0
for any w corresponding to a term in the first sum in (1). It follows that

α|v1λ = aτ
v1

xτ
v1
|v1λ $= 0;

so v1λ is in supp(α) even though 〈ξ, v1λ〉 > 〈ξ, µ〉. This is a contradiction. !

3. Proof of the main result

We now prove Theorem 1.4. Let v and τ in W be such that

(2) 〈λj , τ
−1vλ〉 ≤ 〈λj , τ

−1µ〉,

for some 1 ≤ j ≤ l. We show that xτ
v is in the kernel of the Kirwan map

κ : H∗
T (Oλ) → H∗(Oλ//T (µ)).

Let ξ = τλj be in τC. Note that if w ∈ supp(xτ
v), then τ−1w ≤ τ−1v implies by

Lemma 2.1 that
〈ξ, wλ〉 ≤ 〈ξ, vλ〉 ≤ 〈ξ, µ〉.

Thus xτ
v ∈ kerκ.

Now let us consider α ∈ H∗
T (K/T ) with the property that there exists ξ ∈ t∗

with
supp(α) ⊂ {x ∈ t∗|〈ξ, x〉 ≤ 〈ξ, µ〉}.
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Take τ ∈ W such that ξ ∈ τC. By Theorem 2.2, we can decompose α as

(3) α =
∑

w∈W

aτ
wxτ

w

where aτ
w can be nonzero only if

supp(xτ
w) ⊂ {x ∈ t∗|〈ξ, x〉 ≤ 〈ξ, µ〉}.

In particular, if aτ
w $= 0, then

(4) 〈ξ, wλ〉 ≤ 〈ξ, µ〉.

Since ξ is in τC, it can be written as

(5) ξ = τ
l∑

j=1

rjλj ,

where all rj are nonnegative. So (4) and (5) imply that there exists j ∈ {1, . . . , l}
such that

〈τλj , wλ〉 ≤ 〈τλj , µ〉.

In other words, each nonzero term in the right-hand side of (3) is a multiple of a
xτ

w of the type claimed in Theorem 1.4. !

Remark. It follows that, in the particular situation of generic coadjoint orbits, in
order to cover the whole Tolman-Weitsman kernel of the Kirwan map it is sufficient
to consider affine hyperplanes through µ that are perpendicular to vectors of the
type τλj , with τ ∈ W and j ∈ {1, . . . , l}. But these are just the hyperplanes
parallel to the walls of the moment polytope. This result concerning a “sufficient
set of hyperplanes” has been proved by the first author in [Go2], for an arbitrary
Hamiltonian torus action on a compact manifold.
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