PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 132, Number 10, Pages 3069-3074 S 0002-9939(04)07443-X Article electronically published on June 2, 2004

COHOMOLOGY OF SYMPLECTIC REDUCTIONS OF GENERIC COADJOINT ORBITS

R. F. GOLDIN AND A.-L. MARE

(Communicated by Rebecca Herb)

ABSTRACT. Let \mathcal{O}_{λ} be a generic coadjoint orbit of a compact semi-simple Lie group K. Weight varieties are the symplectic reductions of \mathcal{O}_{λ} by the maximal torus T in K. We use a theorem of Tolman and Weitsman to compute the cohomology ring of these varieties. Our formula relies on a *Schubert basis* of the equivariant cohomology of \mathcal{O}_{λ} , and it makes explicit the dependence on λ and a parameter in $Lie(T)^* =: \mathfrak{t}^*$.

1. INTRODUCTION

Let K be a compact semisimple Lie group, $T \subset K$ a maximal torus and $\mathfrak{t} \subset \mathfrak{k}$ their Lie algebras. Pick a fundamental chamber in \mathfrak{t}^* and a point λ in the interior. Let \mathcal{O}_{λ} be the orbit of λ under the coadjoint representation of K on \mathfrak{k}^* . \mathcal{O}_{λ} is diffeomorphic to the flag variety K/T, and it has a naturally occurring symplectic form ω known as the Kirillov-Kostant-Souriau form. The action of T on \mathcal{O}_{λ} is Hamiltonian, which means that there is an invariant map

$$\Phi: \mathcal{O}_{\lambda} \to \mathfrak{t}^*$$

satisfying $\omega(X_{\eta}, \cdot) = d\Phi^{\eta}$, where $\eta \in \mathfrak{t}$, X_{η} is the vector field on \mathcal{O}_{λ} generated by η , and $\Phi^{\eta}(m) = \Phi(m)(\eta)$ is defined by the natural pairing between \mathfrak{t} and \mathfrak{t}^* . We call Φ a moment map for this action.

The image of Φ is the convex hull of $W \cdot \lambda$, the Weyl group orbit of λ . Let $\mu \in \Phi(\mathcal{O}_{\lambda})$ be a regular value of Φ . We define the symplectic reduction at μ by

$$\Phi^{-1}(\mu)/T = \mathcal{O}_{\lambda}//T(\mu).$$

The goal of this note is to give a presentation of the cohomology¹ ring of $\mathcal{O}_{\lambda}//T(\mu)$ in terms of the root system of K. We present $H^*(\mathcal{O}_{\lambda}//T(\mu))$ as a quotient of the *T*-equivariant cohomology ring $H^*_T(\mathcal{O}_{\lambda})$ by a certain ideal. We rely on the following fundamental result.

©2004 American Mathematical Society

Received by the editors November 8, 2002.

²⁰⁰⁰ Mathematics Subject Classification. Primary 53D20, 14M15.

Key words and phrases. Coadjoint orbits, symplectic reduction, Schubert classes.

The first author was supported by NSF-DMS grant number 0305128.

¹Only cohomology with coefficients in the field \mathbb{Q} of rational numbers will be considered throughout this paper.

Theorem 1.1 (Kirwan). Let M be a compact symplectic manifold with a Hamiltonian T action, where T is a compact torus. If $\mu \in \mathfrak{t}^*$ is a regular value of Φ , then the restriction map in equivariant cohomology,

$$\kappa: H_T^*(M) \to H_T^*(\Phi^{-1}(\mu)),$$

is surjective.

Since the T action is locally free on level sets of the moment map at regular values, $H_T^*(\Phi^{-1}(\mu)) = H^*(M//T(\mu))$. The resulting map $\kappa : H_T^*(M) \to H^*(M//T(\mu))$ is called the *Kirwan map*. Kirwan's result is of particular importance because the equivariant cohomology can be described in terms of the equivariant cohomology of the fixed point sets of the T action. In the case of isolated fixed points, this is just a sum of polynomial rings.

Theorem 1.2 (Kirwan). Let M be a compact Hamiltonian T-space. Let M^T denote the fixed point set of the T action. The restriction map

$$i^*: H^*_T(M) \to H^*_T(M^T)$$

is injective. In the case that M^T is a finite set of points,

$$H_T^*(M^T) = \bigoplus_{p \in M^T} \mathbb{Q}[x_1, \dots, x_n]$$

where $n = \dim T$.

A presentation of the cohomology ring of the reduced space $M//T(\mu)$ can be obtained by using the following description of the kernel of the Kirwan map, which is due to Tolman and Weitsman [TW]. If α is in $H_T^*(M)$ we denote

$$supp(\alpha) = \{ p \in M^T : \alpha|_p \neq 0 \}.$$

Fix an arbitrary inner product $\langle \ , \ \rangle$ on $\mathfrak{t}^*.$

Theorem 1.3 (Tolman-Weitsman). The kernel of the Kirwan map κ is the ideal of $H^*_T(M)$ generated by all $\alpha \in H^*_T(M)$ with the property that there exists $\xi \in \mathfrak{t}^*$ such that

$$\Phi(supp(\alpha)) \subset \{x \in \mathfrak{t}^* | \langle \xi, x \rangle \le \langle \xi, \mu \rangle \}.$$

In other words, ker κ consists of sums of equivariant cohomology classes α with the property that all points of $supp(\alpha)$ are mapped by Φ to the same side of an affine hyperplane in \mathfrak{t}^* that passes through μ .

The *T*-equivariant cohomology ring of the coadjoint orbit $\mathcal{O}_{\lambda} = K/T$ is well understood. Kostant and Kumar constructed in [KK] a basis $\{x_w\}_{w\in W}$ of $H_T^*(K/T)$ as a $H_T^*(pt)$ -module, which we refer to as the *Schubert basis*. Let *B* be a Borel subgroup in $G := K^{\mathbb{C}}$, and let B_- be the opposite Borel subgroup. For any $v \in W$, let $X_v = \overline{B_- vB}/B$, where \tilde{v} is any choice of lift of $v \in W$ in the normalizer of the torus. These opposite Schubert varieties are *T*-invariant subvarieties of $G/B \cong K/T$. The basis $\{x_w\}$ is uniquely defined by the property that

$$\int_{X_v} x_w = \delta_{vw}.$$

Theorem 1.2 suggests the importance of knowing how to restrict the classes x_w to fixed points $W \cdot \lambda$. This formula was worked out for general K by S. Billey [Bi]. In

particular, it is easy to show that $x_w|_v = 0$ if $v \not\leq w$ in the Bruhat order.² In other words,

$$supp(x_w) = \{v\lambda : v \le w\}.$$

To each $\tau \in W$ we can associate the new basis

$$\{x_w^\tau = \tau \cdot x_{\tau^{-1}w}\}_{w \in W},$$

whose elements have the property

$$supp(x_w^{\tau}) = \{v\lambda : \tau^{-1}v \le \tau^{-1}w\}.$$

Let $\lambda_1, \ldots, \lambda_l \in \mathfrak{t}^*$ denote the fundamental weights associated to the chosen fundamental chamber of \mathfrak{t}^* . Let \langle , \rangle be the restriction to \mathfrak{t}^* of a *K*-invariant product on \mathfrak{t}^* . Our main result is:

Theorem 1.4. The cohomology ring $H^*(\mathcal{O}_{\lambda}//T(\mu))$ is isomorphic to the quotient of $H^*_T(K/T)$ by the ideal generated by

$$\{x_v^{\tau}: there \ exists \ j \ such \ that \ \langle \lambda_j, \tau^{-1}v\lambda \rangle \leq \langle \lambda_j, \tau^{-1}\mu \rangle \}.$$

Remark 1. One can take the description of $H_T^*(K/T)$ (see, for instance, [Br]) and deduce a precise presentation of the cohomology ring $H^*(\mathcal{O}_{\lambda}//T(\mu))$ in terms of generators and relations.

Remark 2. For K = SU(n) this result was proven by the first author in [Go1].

2. PRIMARY DESCRIPTION OF ker κ

For any $\xi \in \mathfrak{t}^*$ we denote by f_{ξ} the corresponding height function on \mathcal{O}_{λ} ,

$$f_{\xi}(x) = \langle \xi, x \rangle.$$

Under the pairing between \mathfrak{t}^* and \mathfrak{t} , the function f_{ξ} is a component of the moment map. In fact, it is well known that f_{ξ} is Morse-Bott for all $\xi \in \mathfrak{t}^*$. Denote by $C \subset \mathfrak{t}^*$ the fundamental (positive) Weyl chamber, which can be described by

$$C = \{r_1\lambda_1 + \dots + r_l\lambda_l : \text{ all } r_j > 0\},\$$

and let \overline{C} be its closure.

Lemma 2.1. Let τ be in W and ξ in $\tau \overline{C}$. If $\tau^{-1}v < \tau^{-1}w$ in the Bruhat order, then $f_{\xi}(v\lambda) \leq f_{\xi}(w\lambda)$.

Proof. The result follows immediately from the fact that if $\xi \in C$, then the unstable manifold of f_{ξ} through $v\lambda$ with respect to the Kähler metric on

$$\mathcal{O}_{\lambda} = K/T = G/B$$

is just the Bruhat cell $B \cdot vB/B$ (see, for instance, [Ko]).

²The class x_w differs from the ξ^w constructed in [KK] by the relationship $x_w := w_0 \cdot \xi^{w_0 w}$, where w_0 is the longest element of W.

The main result of this section is:

Theorem 2.1. Suppose that $\alpha \in H^*_T(\mathcal{O}_{\lambda})$ has the property that

$$\Phi(supp(\alpha)) \subset \{ x \in \mathfrak{t}^* : \langle \xi, x \rangle \le \langle \xi, \mu \rangle \}.$$

Then α can be decomposed as

$$\alpha = \sum_{w \in W} a_w^\tau x_w^\tau$$

with $a_w^{\tau} \in H_T^*(pt)$, such that if $a_w^{\tau} \neq 0$, then

$$\Phi(supp(x_w^{\tau})) \subset \{x \in \mathfrak{t}^* : \langle \xi, x \rangle \le \langle \xi, \mu \rangle \}.$$

Proof. Take $\tau \in W$ such that $\xi \in \tau \overline{C}$. Suppose that the decomposition of α with respect to the basis $\{x_w^{\tau}\}_{w \in W}$ is of the form

(1)
$$\alpha = \sum_{w \in W} a_w^{\tau} x_w^{\tau} + a_{v_1}^{\tau} x_{v_1}^{\tau} + \dots + a_{v_r}^{\tau} x_{v_r}^{\tau}$$

where the first sum contains only w with

$$\langle \xi, w\lambda \rangle \le \langle \xi, \mu \rangle,$$

whereas

$$\langle \xi, v_j \lambda \rangle > \langle \xi, \mu \rangle, \quad a_{v_i}^{\tau} \in S(\mathfrak{t}^*), a_{v_i}^{\tau} \neq 0,$$

for any $1 \leq j \leq l$. We may assume that v_1 has the property that there exists no j > 1 with $\tau^{-1}v_1 < \tau^{-1}v_j$. Now let us evaluate both sides of (1) at $v_1\lambda$. Since

$$\langle \xi, w\lambda \rangle \le \langle \xi, \mu \rangle < \langle \xi, v_1\lambda \rangle,$$

by Lemma 2.1 we must have

$$x_w^\tau|_{v_1\lambda} = 0$$

for any w corresponding to a term in the first sum in (1). It follows that

$$\alpha|_{v_1\lambda} = a_{v_1}^{\tau} x_{v_1}^{\tau}|_{v_1\lambda} \neq 0;$$

so $v_1\lambda$ is in $supp(\alpha)$ even though $\langle \xi, v_1\lambda \rangle > \langle \xi, \mu \rangle$. This is a contradiction. \Box

3. Proof of the main result

We now prove Theorem 1.4. Let v and τ in W be such that

(2)
$$\langle \lambda_j, \tau^{-1}v\lambda \rangle \leq \langle \lambda_j, \tau^{-1}\mu \rangle$$

for some $1 \leq j \leq l$. We show that x_v^{τ} is in the kernel of the Kirwan map

$$\kappa: H_T^*(\mathcal{O}_\lambda) \to H^*(\mathcal{O}_\lambda//T(\mu)).$$

Let $\xi = \tau \lambda_j$ be in $\tau \overline{C}$. Note that if $w \in supp(x_v^{\tau})$, then $\tau^{-1}w \leq \tau^{-1}v$ implies by Lemma 2.1 that

$$\langle \xi, w\lambda \rangle \le \langle \xi, v\lambda \rangle \le \langle \xi, \mu \rangle.$$

Thus $x_v^{\tau} \in \ker \kappa$.

Now let us consider $\alpha \in H^*_T(K/T)$ with the property that there exists $\xi \in \mathfrak{t}^*$ with

$$supp(\alpha) \subset \{x \in \mathfrak{t}^* | \langle \xi, x \rangle \le \langle \xi, \mu \rangle \}.$$

3072

Take $\tau \in W$ such that $\xi \in \tau \overline{C}$. By Theorem 2.2, we can decompose α as

(3)
$$\alpha = \sum_{w \in W} a_w^{\tau} x_w^{\tau}$$

where a_w^{τ} can be nonzero only if

$$supp(x_w^{\tau}) \subset \{x \in \mathfrak{t}^* | \langle \xi, x \rangle \le \langle \xi, \mu \rangle \}$$

In particular, if $a_w^{\tau} \neq 0$, then

(4)
$$\langle \xi, w\lambda \rangle \le \langle \xi, \mu \rangle.$$

Since ξ is in $\tau \overline{C}$, it can be written as

(5)
$$\xi = \tau \sum_{j=1}^{l} r_j \lambda_j,$$

where all r_j are nonnegative. So (4) and (5) imply that there exists $j \in \{1, ..., l\}$ such that

$$\langle \tau \lambda_j, w \lambda \rangle \leq \langle \tau \lambda_j, \mu \rangle.$$

In other words, each nonzero term in the right-hand side of (3) is a multiple of a x_w^{τ} of the type claimed in Theorem 1.4.

Remark. It follows that, in the particular situation of generic coadjoint orbits, in order to cover the whole Tolman-Weitsman kernel of the Kirwan map it is sufficient to consider affine hyperplanes through μ that are perpendicular to vectors of the type $\tau \lambda_j$, with $\tau \in W$ and $j \in \{1, \ldots, l\}$. But these are just the hyperplanes parallel to the walls of the moment polytope. This result concerning a "sufficient set of hyperplanes" has been proved by the first author in [Go2], for an *arbitrary* Hamiltonian torus action on a compact manifold.

Acknowledgement

The second author would like to thank Lisa Jeffrey for introducing him to the topic of the paper. Both authors would like to thank her for a careful reading of the manuscript and for suggesting several improvements.

References

- [Bi] S. Billey, Kostant polynomials and the cohomology of G/B, Duke Math. J. 96 (1999) 205-224. MR 2000a:14060
- [Br] M. Brion, Equivariant cohomology and equivariant intersection theory, in Representation Theory and Algebraic Geometry, Kluwer Acad. Publ. (1998) 1-37. MR 99m:14005
- [Go1] R. F. Goldin, The cohomology ring of weight varieties and polygon spaces, Adv. in Math. 160 (2001) No. 2, 175-204. MR 2002f:53139
- [Go2] R. F. Goldin, An effective algorithm for the cohomology ring of symplectic reductions, Geom. and Funct. Anal., Vol. 12 (2002), 567–583. MR 2003m:53148
- [Ki] F. C. Kirwan, Cohomology of Quotients in Complex and Algebraic Geometry, Mathematical Notes 31, Princeton University Press, Princeton, N. J. (1984). MR 86i:58050
- [Ko] R. R. Kocherlakota, Integral homology of real flag manifolds and loop spaces of symmetric spaces, Adv. in Math. 110 (1995) no. 1, 1-46. MR 96a:57066

- [KK] B. Kostant and S. Kumar, The nil Hecke ring and cohomology of G/P for a Kac-Moody group G, Adv. in Math. 62 (1986) no. 3, 187-237. MR 88b:17025b
- [TW] S. Tolman and J. Weitsman, The cohomology rings of symplectic quotients Comm. Anal. Geom. 11 (2003), no. 4, 751–773.

Mathematical Sciences, George Mason University, MS 3F2, 4400 University Dr., Fairfax, Virginia22030

E-mail address: rgoldin@gmu.edu

Department of Mathematics, University of Toronto, Toronto, Ontario, Canada ${\rm M5S}$ 3G3

 $E\text{-}mail \ address: \texttt{amareQmath.toronto.edu}$

3074