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Of fundamental importance in describing a neuron’s activity and constructing biologically plausible neural net-
works is the unambiguous description of its smallest element of input in the integration process. Among neuronal
input units are the synaptic spines: highly regulated and coordinated elements on the dendrites, exchanging both
electrical signals and molecules with the soma along the dendritic branches. Mapping the physiological param-
eters of dendritic branches and their spines in anatomically compatible coordinates is important because of the
interactions between ‘“close” spines and between spines and the soma. We present a simple method for quantita-
tively locating dendritic spines by separating their coordinates into two components. The first takes into account
the position of the dendritic branch on which the spine lies. In this component, the distance between a branch and
the soma is given by the number of bifurcations along the dendrite (“level”). We have formulaically described the
difference in this parameter between any two spines (‘distance”) in terms of the level of the common bifurcation
farthest from the soma (“generator”). The second component of a spine’s location is its position on the dendritic
branch. Our system is fully analytical and easily implementable. It also defines a biologically plausible distance
between any two spines, and between a spine and the soma. Based on this labeling method, we present a coordi-
nate system in which a spine is described by a matrix encoding physiological parameters of the generating branches.
A second set of coordinates is introduced to describe a neural state with a matrix of spine parameters. Finally, a
third matrix notation is proposed to take into account interactions between spines. This treatment leads to some
interesting speculations, such as the possibility of describing input dynamics of a neuron in terms of operators on
vector spaces. © 1997 John Wiley & Sons, Inc.
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1. INTRODUCTION
tis widely accepted that the neuron is not a simple switch
or unit of transmission, but rather a complex system able
to handle a large amount of data [1]. The integration of a

posed that even higher cognitive functions in mammals, such
as learning and memory, find their molecular correlates not
only in cellular interaction among neurons, but also in
intraneuronal events involving subcellular organelles, the

large set of inputs by a single neuron constitutes a process of
complex computation, ultimately responsible for many, if not
all, macroscopic abilities of nervous systems. It has been pro-

dendritic spines [2] (Figure 1a—c). Spines, small protuberances,
about 20,000 to a cortical pyramidal cell, are one type of syn-
aptic loci for the input in the neuron-to-neuron interactions,
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a 20 um

Confocal microscopy of a pyramidal cell from the CA1 region of rat hippo-cam-
pus. Scale bar: 20 um. Slice/cultured neurons were stained with lucifer yellow
and scanned with an argon-ion laser. The soma is visible in the middle, several
dendritic trees on the bottom, and the axon on the top of the picture (Courtesy of
C. Collin and M. Segal, Lab. Adaptive Systems, NINDS, NIH, Bethesda, Md).

representing therefore a unit of integration. The neuron can
also receive stimuli through direct synaptic contacts on the
soma, although dendritic connections seem to play a pivotal
role in the determination and regulation of fine-tuned pro-
cesses of the neuron, such as association [3]. In addition, not
all the synapses on the dendritic branches involve spines and,
in general, the precise functional role of dendritic spines is
still under debate [4, 5].

It has been postulated that, in principle, a complete map
of synaptic activities would determine the state of the neuron
entirely [6], and it appears evident that while the contribu-
tion of direct connections on the soma is more easily com-
putable, dendritic inputs are both crucial and difficult to
model. Even though the physiology and the biochemistry of
dendritic spines are far from well known, a biologically mean-
ingful way of describing spine location with respect to the

100X enlargement of a dendritic branch from 7a, several spines are evident
(Courtesy of C. Collin and M. Segal, Lab. Adaptive Systems, NINDS, NIH,
Bethesda, Md).
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Schematic draw of a neuron like in
1a. Notice the complex harborization
of the dendrites (bottom) compared
to the axon (top).
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soma or to other spines is clearly needed.

Furthermore, in classical neural network models, any in-
tracellular cytoarchitecture and compartmentalization are ig-
nored, and the system is completely specified when the con-
nection weight between any two neurons is known [7]. Based
on the neurobiological research, this approach seems to be
too crude and simple to achieve the computational power of
natural nervous systems, and indeed several models have
been proposed in which the neuron is itself a neural network
[8]. Therefore, of fundamental importance for those neural
network researchers who wish to design biologically plausible

models, is a system which numerically labels dendritic spines
in a manner suitable to take physiological parameters into
account. Moreover, there is no need to topologically distin-
guish dendritic spines from other dendritic synapses, there-
after a coordinate system for spines or dendritic branches fur-
nishes a general mathematical tool to model highly
modulatory neuronal inputs.

In order to match these needs, suitable coordinates for
dendritic spines should fulfill the following characteristics,
which we discuss below:

© 1997 John Wiley & Sons, Inc.
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1) The position of a spine in these coordinates must encode
(or be incorporated in) a simple definition of a distance
between the spine itself and the soma of the neuron.

2) A distance between spines along the dendrites must be
defined based on their positions relative to the soma.

3) The mathematics developed with the definition(s) of
distance(s) must be easily implementable.

The first characteristic is justified by the need to describe the
complex interactions between the spines and the soma. For
instance, spines send electrical signals to the soma, and as a
first approximation one may consider spines farther away to
have a smaller weight in the final integration of the neuron
[9]. On the other hand, small molecules and biopolymers
travel along the dendrites in both directions, and both active
transportation and passive diffusion seem to play arole in this
process [10]. An important example is given by calcium ion, a
second messenger that also plays a role in dendritic action
potential [11]. In the case of the soma delivering molecules to
the spines, it is likely that a smaller amount of substance will
be available for spines farther from the soma [12]. A particu-
lar example of this process will be discussed in another sec-
tion of this paper. It is interesting to note that in order to de-
scribe the two above-mentioned examples (electric signaling
and molecular transportation) different information content
(Iength and size of the branches, number of bifurcations, and
so on) may in principle be useful in the definition of distance
of the spine from the soma. In general, it is convenient to de-
velop a flexible coordinate system that allows the definition
of several distances, or of one distance with several possible
biological applications.

The second characteristic is necessary in order to describe
interactions between spines: evidence suggests that adjacent
spines undergo mechanisms of cooperativity or mutual inhi-
bition as a subcellular basis of associative learning and
memory [13, 14]. Models have been proposed in which the
association between two distinct neural pathways, as in the
case of classical (Pavlovian) conditioning, is explainable in
terms of association between spines in single neurons shared
by the two pathways [15]. In this model, close spines are sim-
ply likely to interact more efficiently. A more elaborate model
holds that each cluster of spines (on a branch or even a group
of branches) can also interact with other close clusters, thus
forming the second of several levels of association, eventu-
ally integrated by the neuron [16]. In these models, the defi-
nition of a distance between spines would allow the descrip-
tion of a “sphere” of interaction around a spine.

hese two characteristics imply that the anatomy (topol-
ogy) of the neuron should be conserved (or taken into
account) in the coordinate system: for example, locat-
ing spines in standard Cartesian coordinates is a very ineffi-
cient system to describe processes along the dendrites, and
any correction factors make the system inconveniently com-

plicated. Nonetheless, some neural phenomena are actually
well described in simple Cartesian coordinates, such as the
possibility for spatially close spines to receive synaptic con-
tacts from the same axon [17], or the influence of the concen-
tration of specific extracellular substances on intracellular ac-
tivities. The final description of the neural state will have to
consider both the Cartesian and the non-Cartesian coordi-
nate contribution, although only the second component is the
domain of this paper.

2. METHOD

he numerical system we present assigns a unique pair

of numbers to each spine, designating its position on the

dendritic tree. The first number indicates on which
branch of the dendrite the spine is located. The second mea-
sures how far along this dendritic branch the spine lies (the
spatial distance from the last bifurcation of the dendrite). We
define a topological distancebetween any spine and the soma
by the number of branch bifurcations between the branch on
which the spine is located and the soma itself, and by how
physically close the spine is to the bifurcation which defines
the branch. This easily generalizes to a distance between any
two spines. The first number in the pair is useful to describe
those interactions between the soma and a specific spine, or
between two spines, which depend more acutely on the num-
ber of bifurcations along the dendritic branches than they
depend on the actual measured distance of the spine from
the soma. The use of the second number, however, targets a
specific spine after finding the branch on which it lies, like a
house number on a named street.

Of primary importance, then, is finding a simple system
tonumber the dendritic branches themselves. Directions from
the soma to a specific dendritic branch may be specified by a
series of choices, either “right” or “left” at each bifurcation of
the branch. Right and left are arbitrarily defined in three-di-
mensional space using a choice of orientation at each bifur-
cation. It is opportune to standardize this choice by identify-
ing, univocally, a given branch by its label. An example of such
astandardization is briefly described here: first orient the neu-
ron in three-dimensional space with a choice of orthogonal
axes (labeled x, y, and z.) centered at the soma. This choice of
Euclidean coordinates is the only part of the orientation that
is arbitrarily assigned. At each bifurcation, the two protrud-
ing branches are distinguished from one another by any plane
that separates them in three-space. Translate the coordinate
axes to the point of bifurcation. If the two branches span a
plane that is not perpendicular to the xy-plane, they can be
separated by a plane through the z-axis as follows. If the
yz-plane separates the two branches, call “right” the branch
in the positive x-hemispace and “left” the branch in the neg-
ative x-hemispace. If the plane does not separate them, sim-
ply rotate the coordinate system about the z-axis counter-
clockwise until it does; label “right” and “left” as prescribed.
If the two branches lie in a plane that is perpendicular to the
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Schematization of the numbering system for a dendritic tree. The branches are labeled in decimal notation, with the corresponding binary number in parentheses.
The level (on the left) is the number of bifurcations between the branches and the soma.

xy-plane, separate them by the xy-plane after a counterclock-
wise rotation of the coordinate system around the x axis. La-
bel the branch in the positive z-axis right, and the branch in
the negative z-axis left.

t should be noted that theoretically there are no circum-

stances in which there is a three-way (or more) bifurcation.

One may consider such occurrences as single bifurca-
tions followed closely by secondary bifurcations. Since there
is only one path from the soma to any branch within a spe-
cific dendritic tree, the address of the branch is uniquely speci-
fied by a sequence of left’s and right’s, indicating directions
from the soma to the branch. We replace this awkward lan-
guage with binary code; each dendritic branch is labeled by
a unique binary number, where 1 stands for left and 0 stands
for right. We convert it to the decimal system to obtain a
unique positive integer assigned to each branch. The branch
protruding from the soma which defines the dendritic tree
is labeled 1.

With this numbering system in place, one can easily cal-
culate the “branch-distance” of the spine to the soma, defined
as the number of bifurcations there are in between the soma
and the branch. This distance will be called the level of the
branch (Figure 2). If we refer to the binary number associated
with this branch, it is simply the number of 0’s or 1’s in the
number; each 0 or 1 indicates one bifurcation. The equiva-
lent description in decimal notation is to define thelevel lofa
branch xto be

Ix)=1+ Int(logzx).

where Int() is the integer of (). The topological distance be-
tween a spine and the soma is then defined by a pair of num-
bers; the first is the level of the branch, and the second is the
measured distance between the spine and the bifurcation gen-
erating the branch. The ordering amongst the spines is the
following: any spine with a lower level is closer to the soma
than any spine with a higher level. Amongst spines which are
at an equal level, those which have a smaller second number
in their addresses are closer to the soma than those with a
larger one.

This framework suggests a notion of distance between two
spines as well. Such a distance must be faithful to the ana-
tomical path taken in traveling from one spine to another. The
shortest path from one spine to another is the (unique) route
which goes from the first spine “up” the dendritic tree to the
first branch it has in common with the other spine, then
“down” different branches until it reaches the second spine.
Itis, therefore, useful to define the generator of two spines, or
the branch farthest from the soma which is in the path from
the soma to both spines (Figure 2). We define a parent of a
spine to be any branch in the path from the soma to the spine.
The generator of two spines is thus the common parent which
is farthest from the soma. The topological distance between
two spines has two components, defined as follows: the first
is the sum of the differences in levels between each spine and
the generator. The second component is the sum of the sec-
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ond numbers of the addresses of the spines. Two spines are
closer to each other than two other spines if either the first
component of the distance between them is smaller than that
ofthe other pair of spines, or if the first component is the same
and the second is smaller. To calculate the first component of
the distance between two spines, we need only know on which
branches theylie. Let x and y be the positions of two branches.
Then the distance between the branches (which is also the
first component in the pair that defines the topological dis-
tance between two spines) is described by:

dxy) =1 +1y) -2l@gxy) (9

where g(x,y) is the position of the generator of x and y. Notice
that the generator of two spines depends only on the branches
on which the spines lie.

t must be feasible to calculate the level of the generator of

two spines on branches labeled x and y. Assume for the

moment that the two spines in question have the same
level. If x and y were the same number, the level of the genera-
tor would be simply that of x (or y). If they are not the same
number, we want to find the unique parent branch one level
lower (“higher” on the dendritic tree) than each spine and
compare these two. If they are the same, we have found the
generator, and if not, we continue this process. The corre-
sponding mathematics to specifying the level of the parent of
the branch x one level lower is dividing by 2 (using decimal
notation), and taking the integer of x/2. This is an iterative pro-
cess: at each step, we evaluate In#(2x) and Int(2"y) and com-
pare them, where 7 is the number of times we have already
iterated (n begins at 0, which compares the numbers xand y
themselves). The level of the generator will be the level of the
number Int(2"x) when it first coincides with Int(2-"y), i.e., for
minimal 7.

To formalize this process mathematically, we would like to
find an expression which is 1 when we have a common par-
ent, and 0 otherwise. The level of the generator is then a sum
of these numbers, for there are precisely /(g(x,y)) common
parent branches of x and y. It is sufficient to find such an ex-
pression which is between 0 and 1 for each 7, and strictly less
than 1 if and only if the nth iteration of moving up along the
tree (decreasing the level by one) does not yield a common
parent; applying the Int() function makes the expression equal
to 1 when we have a common parent, and 0 otherwise, as de-
sired. The expression

[Int(2x)]"" - [Int2"y)]"|

has these properties, except it equals 0 if and only if the two
numbers are equal. The expression:

cos{(n/2)|[Int(2™x)] "' - [Int2™y)]"'|}

equals 1 exactly when we have a common parent, and is oth-
erwise strictly less than 1. Apply In#(), and we have a new ex-

pression which is 1 when we have found common parents of
x and y, and 0 otherwise. Summing over n, we obtain the level
of the generator:

1(g(x,y)) = 3 Int(cos{(x/2)|[Int(2™x)]! - [Int(2™y) ]|}

where the sumisfromn=0ton=1I(x).

Now for the more general case. Without loss of generality,
assume that /(x) </(y). We find the unique parent of y which is
on the same level of x, and then apply the method above. Call
this parent y’. We have:

y' = Int(2-01wy)

Any easy check shows that /(y’)=I(x). The formula given in (*)
is now calculable.

This method of numbering branches and spines estab-
lishes two closely related notions of somatocentric coordi-
nates. The first (“branch coordinates”) describes a particular
spine, where the ith coordinate corresponds to the ith branch
in the path from the soma to the spine. Alternatively, the “spine
coordinates” describe a dendritic tree, where the ith coordi-
nate corresponds to the ith spine in the tree.

3. APPLICATIONS

There are several applications of Section 2, three of which we
briefly attempt to explore here. The first is to model a single
spine, describing several physiological features which can be
represented through the coordinate system we have devel-
oped. The second is a model for the entire neural input map,
described in terms of dendritic spine parameters. The third
application is to model the interactions between any two
spines of the neuron, such as association, cooperativity or
mutual inhibition.

The first application of the somatocentric coordinates con-
structed in Section 2 is a matrix description of a single spine.
Branch coordinates allow an efficient tabulation of the infor-
mation about a spine, including as many or as few param-
eters as desired, in a matrix of real numbers or functions. For
the purposes of this exposition, we consider a matrix as a col-
lection of column vectors, each of which will represent some
category of information. The coordinate system for the ma-
trices is that described in Section 2; the ith entry in each vec-
tor corresponds to the ith branch in the path from the soma
to the spine in question. Thus, if there are n branches in this
path (including the branch on which the spine lies), there will
be n entries in each vector.

ith this coordinate system in place, the first vector in
the matrix associated to a specific spine is the branch
vector, which consists of the sequence of 0’s and 1’s
corresponding to the path from the soma to the spine. The
branch vector is obviously motivation for the choice of coor-
dinate system, but the coordinate system allows us to incor-
porate far more information in vectors of the same form (Fig-

a4

COMPLEXITY

© 1997 John Wiley & Sons, Inc.




ure 3a). For example, we can
define a vector of branch
length, where the ith entry is the
length of the ith branch; the last
entry will be weighted in the
sense that it will record the
length of the last branch from
the defining bifurcation to the
spine, not the entire length of
the branch.

Correspondingly, we can de-
fine the branch diameter vec-
tor; in this case, the last entry
will not need to be weighted be-
cause of the position of the
spine on the branch. In fact, one
can define a column vector for
any local physiological prop-
erty, i.e., any property that does
not depend on the state of the
entire neuron, rather is well-de-
fined for individual branches. In
particular, information pertain-
ing to the electrical properties
of the branch, such as conduc-
tivity, permeability to several
specificions, presence of active
pumps etc., can be neatly tabu-
lated. Such information can be
used to calculate the contribu-
tion of a spine’s electrical activ-
ity to the soma potential. This
method, in a simplified version,
can also be applied to a descrip-
tion of nonspine mediated den-
dritic synapses.

As an example of the utility
of this description, we discuss
below a problem concerning
molecular transportation.
When a specific dendritic spine
drastically changes its activity,
for instance following a sus-
tained activation of the neural
pathway in which it is involved,
it undergoes functional and
morphological changes that re-
quire the synthesis of new pro-
teins and thereafter the activa-
tion of specific translational
and/or transcriptional pro-
cesses [18, 19]. An extremely in-
triguing open problem in neu-
robiology is: how can the soma

a th parameter

O |—ithbranch>

1101

“Branch” coordinates for spines: the resulting matrix describes a single spine in terms of its branch parameters.
The binary number of a spine describes its address as a “route” of bifurcations from the soma (1: left, 0: right). The
number of 0’'s and 1’s in such a binary address is the level of the spine.

b jth parameter

—ith spine—

“Spine” coordinates for dendritic trees: the resulting matrix describes an entire dendritic tree in terms of its spine
parameters. Spines are numbered by their branch number and, within the same branch, by their distance from the
previous bifurcation.

1st spine

spine ith
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Three-dimensional association matrix, built to describe the parameters of interaction between any two spines on a
dendritic tree. Typical parameters for this matrix are spine distances. A simple topological distance between two
spines is defined in the text.
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(where the genes are expressed) specifically target the acti-
vated spine (where the proteins carry out their function) with
the delivery of a macromolecule? A model has recently been
proposed in which a regulatory protein exists both within the
nucleus, associated with plasticity-related genes, and in the
dendrites [20], associated with the spine-localized polyribo-
somes [21]. Instead of binding upstream to the exon, such
transcription factor would bind, when activated, within the
c-strand of the exon itself in order to enhance or promote gene
transcription.

he resulting mRNA would have the desirable effect of

also being a“receptor” for such protein. The mRNA prod-

uctwould then be carried along the whole dendritic tree
by means of the active transport machinery [22, 23], but would
be selectively “captured” by those spines containing the acti-
vated promoter itself. How much of the macromolecule pro-
duced in the soma actually reaches the targeted spine? A
simple estimate of the quantity of gene available for a specific
spine is obtainable by its level as defined in the Method; at
every bifurcation the amount of the macromolecule is roughly
halved, so we might expect that 1/2" of the material reaches a
spine on the nth branch. A more accurate description is pro-
vided by considering other parameters such as the diameter
of each branch (at each bifurcation, more material flows into
larger branches) or the activity of the transportation machin-
ery in each branch, and could be computed by means of the
spine matrix in branch coordinates introduced above.

A more general application of our coordinate system
might be used to handle information concerning the whole
neuron, whose electrical input basically depends on the ac-
tivity of its dendritic trees. The same idea used for a matrix
associated to a single spine can be employed to describe an
entire dendritic tree. This matrix is also written in
somatocentric coordinates, but now we consider the spine
coordinates instead of the branch coordinates; the ith entry
of the tree matrix corresponds to the ith spine. As described
for the matrix associated to a spine, the dendritic tree ma-
trix may include any parameters which are well defined for
individual spines (Figure 3b). Each column in the matrix will
be a vector of a chosen parameter such as spine activity, and
the ith entry of this vector will be the activity of the ith spine
in the tree. Whereas a spine matrix records data associated
to a particular spine and its relationship to the soma, the
dendritic tree matrix tabulates information about every
spine, such as each spine’s weight, activity, etc., without
specifying anything about the branches which lead from the
soma. Interestingly, some of the information needed for the
dendritic tree matrix, i.e., to model the neuron, might be
obtained from the spine matrix.

An important feature characterizing spines is their rela-
tionship with each other. Spine interaction heavily influences
neural activity, and models have been proposed in which the
nonlinear summation of the electrical contribution of spe-

cific spines on a dendritic tree constitutes the subcellular
basis of associative memory such as in classical condition-
ing [24]. The third example of applications of the coordinate
system presented in this paper is then a way of tabulating
the interaction between any two spines on a dendritic tree.
For each pair of spines, we would like to describe param-
eters of interaction, such as cooperation, inhibition, topo-
logical or electrical distance between the two spines, etc. For
each parameter, we construct a matrix of the interactions of
the spines; the ijth entry of the matrix is the parameter ap-
plied to the spines i and j (such as the topological distance
between spines i and j). Placing these matrices together in a
three-dimensional matrix, we have constructed a table of
interactions between spines (Figure 3c); the ijkth entry of
the matrix is the kth parameter of spines i and j. Based on
the information encoded in this matrix, correction factors
might be introduced in both previous matrices (for spines
and for the whole dendritic tree), for any parameter influ-
enced by spine-to-spine interactions.

4. CONCLUSION

In the present paper we introduced a numerical algorithm
useful for a mathematical description of dendritic branches,
spines and their interactions with the soma and with each
other. We consequently introduced two new coordinate sys-
tems, called somatocentric, in which the cellular anatomy of
the neuron is conserved, in that only the space along the den-
dritic tree is considered. This numerical algorithm and these
coordinate systems can, therefore, be adopted for every prob-
lem in which the structure of the dendrites is important. Al-
though modern neurobiology suggests that this is indeed the
vast majority of cases, it should be noted that other coordi-
nates (Cartesian or polar for instance) may be used to describe
phenomena that do not depend on the dendritic structure.

ery few attempts have been made in the past to label
the dendritic space in a biologically plausible fashion.
In one of the most successful examples, a model of a
Purkinje cell was developed based on simplified channel ki-
netics [25]. The simulations were in excellent agreement with
the experimental recordings in the soma and in the proximal
and distal dendrites. The model used a Purkinje cell mor-
phology reconstructed on the basis of 1089 branch compart-
ments grouped and numbered in a purely anatomical
(nontopological) way [26]. The above work allowed one to take
into account as many as seven ionic conductances, and it
seems possible to generalize the method for different branch
parameters. While such a description successfully recon-
structed a Purkinje cell of rat cerebellum, the coordinate sys-
tems proposed in the present paper allow a more general de-
scription of dendritic structures, and also easily tabulates the
interactions among spines.
The proposed algorithm and coordinate systems are eas-
ilyimplementable and extremely flexible, as they can take into
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account as many parameters as needed. Some of these pa-
rameters might be experimentally measured and others may
be calculated, which allows these coordinates to be used not
only for a univocal description of an observed cellular sys-
tem, but also as a basis for the design of biologically plausible
neural networks, in which the subcellular input units (den-
dritic branches and/or spines) are also modeled. The flexibil-
ity of this system is mostly due to the assignment of an or-
dered integer number to each branch of the dendrite, and
thereof to the possibility of building vectors whose elements
correspond to specific branches or specific spines. This natu-
rally leads to the use of matrix notation for physiological pa-
rameters. In particular, we suggested some applications that
can be developed in the future, such as the detailed descrip-
tion of the properties of a dendritic spine, in terms of the pa-
rameters of the branches generating it, or the overall descrip-
tion of the properties of an entire dendritic tree, in terms of
the parameters of the spines on it. Many processes can be
described in these coordinates, such as electrical flow (which
takes into account e.g., ion channel and active pump distri-
bution, myelination, dissipation, and path length), or molecu-
lar transportation (which depends on e.g., branch diameter,
passive diffusion, active transportation and path length).

e have shown how these coordinates may be used to

obtain the distribution of molecules passively dif-

fused from the soma to the spines. This parameter,
expressed in terms of the spine’s level, is useful in the solution
of problems related to gene activation and spine targeting [20,
21]. Naturally, more complex parameters must be incorpo-
rated to model active transportation or ionic conductances.
Amore complete description of the spine’s parameters (which
is beyond the scope of the present paper) is being developed
in these coordinates based on the recently proposed model
of Qualitative Reasoning Neuron (QRN) [27-29].

Given an opportune definition of distance, spines can also
be grouped in spheres or clusters, “close” in regard with a par-
ticular physiological property. Furthermore, interaction be-
tween spines or spine clusters can be expressed to model
properties such as cooperativity or inhibition, responsible for
nonlinear behavior which is crucial for modeling associative
memory.

Finally, the matrix notation adopted to describe physiologi-
cal characteristics of spines and dendrites, introduces the
possibility of using operators on vector spaces representing
the dependence of considered parameters on time and neu-
ral activity. This structure suggests that the method presented
in this paper offers extremely powerful computational tools.

These somatocentric coordinate systems need to be tested
on experimental data analysis and on existing or new neural
networks to fully prove a physiological consistency and a com-
putational utility, nonetheless they represent one of the first
attempts to describe mathematically the subcellular structure
of neuronal inputs with a direct anatomical approach.
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