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Introduction: Identifying Neuronal Classes Y N
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The mammalian brain is a large network of neurons (~108 in rodents, up to 10 in humans), sparsely —7 ‘/‘DD . (7/'3

UNIVERSITY

°

interconnected by synapses (~10% per neuron). Most synapses are directional contacts from the axon of M o
the sending neuron to the dendrite of the receiving neuron. Although no two neurons have the exact ::;'g‘:s‘s‘:s"
same synaptic connectivity, clear similarity patterns support the fundamental working assumption of

identifiable neuronal classes with distinct connectivity and function. Figure 1. Model of data and classification

Given a large network of neurons with their connections ("data"), we use statistical techniques such as cluster analysis and a Bayesian Information Criterion! (BIC) function
to identify groups of neurons (estimated neuronal classes) with similar connectivity. To check the robustness of this technique, we simulate a network with a biologically
plausible set of neuronal classes and connections. We then measure how closely the estimated classes mimic the original "true" neuronal classes.

Data

We assume k=8 classes of neurons and n=32,768 neurons divided into
classes specified by color.

Simulation Approach

. 15768 CA1 Pyramidal Cells: Principal output neurons of the hippocampus. Excitatory. Constitute one of the
most studied and best characterized neuron types in the brain.

Mathematical Terminology J = - - -
Directed Graph: A collection of Vertices (neurons) and Directed Edges (connections from anaxon of | |@ ‘20 AL Oriens/Lacunosum-Moleculare Cells: local inhibitory neurons. Dendrites are in the oriens layer
te of h and their axons start in the oriens and go up to L -Moleculare .
one neuron to 3 dendrite of another). - o . o 1000 CA1 Basket Cells: local peri-somatic inhibitory interneurons. Axons target pyramidal and basket cells.
Classes of Vertices: Groups of neurons that have similar connectivity properties. Each neuron is in Their dendrites span all layers of CAL.

exactly one group.

. 3000 CA1 Perforant Pathway-Associated Cells: local inhibitory interneurons with dendrites and axons
True Classes: Classes of vertices pre-defined in the simulation. confined to the Lacunosum-Moleculare layer.
Estimated Classes: Classes of vertices obtained by the model. 2000 CA1 Oriens Cells: Local inhibitory interneurons. Dendrites and axons confined to the oriens layer.
Probability Matrix: A table of probabilities; the entry in the at" row and b® column is the ° 2500 Entorhinal Cortex Layer 5 Pyramidal Cells: play the role of deep layer 'input’ neurons. They are
probability that a neuron in class a connects with one in class b. excitatory and have dendrites and axons through the deep and superficial layers of the entorhinal cortex.
Adjacency Matrix: An n x n matrix (n large) of Os and 1s indicating the absence or presence of a 2500 Entorhinal Cortex Layer 3 Pyramidal Cells: One of the superficial excitatory layer 'output' neurons.

Dendrites through the deep and superficial layers of the EC. Axons starting in layer 3,projecting to CALM.
2000 Entorhinal Cortex GABAergic Cells: Inhibitory local interneurons of the EC, with axons and dendrites
through the deep and superficial layers of the entorhinal cortex.

connection, respectively, from one neuron to another.

Observed Data
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ﬁ Figure 6. Adjacency
/ | matrix (the pixels on the

left represent only the
1s, not the 0s)

For each n x n adjacency matrix A and each dimension d=1,2,...,
10, we use Singular Value Decomposition (SVD) to obtain an

Figure 5. Squint! Can you see 250,000 pixels? (lift for explanation)

approximation of A: We ran 50 simulations

Results: Estimating Class Assignments
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the cases for d>1. The probabilities differed from true probability
Color-consistent columns and rows correspond to singular (in Euclidean norm, square root of sum of squares of differences in
values, and multi-colored columns and rows correspond to matrices) on the order of 107 for d>2. Classes were assigned k=7
individual neurons/vertices. For each vertex, we have d correctly 100 percent of the time for d>1. For smaller n and/or for
parameters, d<<n, from which we can estimate the connectivity d=1, class assignment was not perfect. s —
of the graph. The row (u;; 1, u;; u;,) records the vectors Estimated and True Classes n=32,768
. k o . Blow up for n=32768
connecting to the ith neuron while the column (v;; v, v5; U,) g,
records those vertices to which the i neuron connects. ) ' Whiskers
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We apply the kmeans clustering technique? to these n rows and
n columns (d-vectors) to find clusters of vertices; these
represent estimated classes of neurons with similar connectivity
statistics. The estimated number of classes is determined using
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These probabilities estimate the original probabilities; error o0 0005 0010 0015 0020 0058 SVD Dimensions meaningful interpretation of
obtained by comparing this matrix to the true probabilities are Y4 neuronal class. Suitable data include

P . Figure 9. 8 true classes (by color) Figure 10. Error in probability table c
represented in Figure 10. We correct the clustering by 10 and 8 estimated class (by shape) found compared to true probability | dense electron microscopy

percent of the minimal distance among rows and columns in P.

reconstructions (identified synapses)
and light microscopy (potential
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