1. Use the limit definition of the derivative, that is \(f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \), to find the derivative of \(f(x) = 5x - 3x^2 \). You may check your answer with the power rule, but you must show all steps of your reasoning to get any credit for this answer.

\[
f'(x) = \lim_{h \to 0} \frac{5(x+h) - 3(x+h)^2 - (5x - 3x^2)}{h} = \lim_{h \to 0} \frac{5h - 6xh - 3h^2}{h} = \lim_{h \to 0} \frac{5h}{h} - \frac{6xh}{h} - \frac{3h^2}{h} = 5 - 6x
\]

2. Find the following derivatives, using any correct techniques. Unless otherwise specified, you do not have to simplify your answers.

a) \(f(x) = \frac{4x-3}{x^2+4} \)

\[
f'(x) = \frac{(x^2+4)(4) - (4x-3)(2x)}{(x^2+4)^2} = \frac{4x^2 + 16 - 8x^2 + 6x}{(x^2+4)^2} = \frac{4 - 4x^2 + 6x}{(x^2+4)^2}
\]

b) \(f(x) = (x^2 - 2\ln(x))^{1/2} \)

\[
f'(x) = \frac{1}{2}(x^2 - 2\ln(x))^{-1/2} \cdot (2x - 2/x)
\]

c) \(f(x) = \sqrt[3]{3x^3 - 4} \)

\[
f'(x) = \frac{1}{3}(3x^3 - 4)^{-2/3} \cdot 9x^2 = \frac{9x^2}{3(x^3 - 4)^{2/3}}
\]

3. Find the first and second derivatives of each of the following:

a) \(f(x) = 2x^2 + \frac{3}{x} \)

\[
f'(x) = 4x - 7x^{-2}
\]
\[
f''(x) = 4 + 14x^{-3}
\]

b) \(f(x) = (x^4 - 2)^6 \)

\[
f'(x) = 6(x^4 - 2)^5(4x^3)
\]
\[
f''(x) = 24x^3(20x^3)(x^4 - 2)^4 + 72x^2(x^4 - 2)^5
\]
4. Find an equation of the line tangent to \(f(x) = x^3(2 - 3x^2) \) at \(x = 1 \).

Solution:

I. Point: plug \(x = 1 \) into \(f(x) \) to get \(y: f'(1) = 13(2 - 3, 12) = -1 \). \((1, -1) \) is the point.

II. Slope: \(f'(x) = 3x^2(2 - 3x^2) + (-9x^4)x^2 \) (product rule or -

\[
\begin{align*}
&f'(x) = 3x^2 (2 - 3x^2) - 9x^4, \\
&f'(1) = 3x^2 - 9x^4, \quad f'(1) = 3(x^2 - 3x^4) = -9x^2.
\end{align*}
\]

III. Line: \(y - (-1) = -12(x - 1) \) \(y + 1 = -12x + 12 \); \(y = -12x + 11 \).

5. An upscale fast food restaurant has determined that the relationship between the price \(p \), in dollars, at which it can sell hamburgers and the quantity \(q \) that it can sell is \(p = \frac{80,000 - q}{20,000} \).

a) Find the revenue function as a function of the quantity of hamburgers sold (ie, find \(R(q) \)).

\[
R(q) = q \cdot \left(\frac{80,000 - q}{20,000} \right) = \frac{80,000q - q^2}{20,000} = \frac{1}{20,000} \left(80,000q - q^2 \right).
\]

b) Find the marginal revenue function.

\[
R'(q) = \frac{1}{20,000} \cdot (80,000 - 2q) = \frac{80,000 - 2q}{20,000}
\]

c) Use the marginal revenue function to estimate the revenue from the sale of the 10,001\(^{st}\) hamburger and interpret your result (tell me in words, with units, what your answer means.)

\[
R'(10,000) = \frac{1}{20,000} \left(80,000 - 2(10,000) \right) = \frac{1}{20,000} \left(80,000 - 20,000 \right) = \frac{60,000}{20,000} = 3 \text{ dollars per hamburger}
\]

6. When a company produces and sells \(x \) thousand units per week, its total weekly profit is \(P \) thousand dollars, where \(P = \frac{300x}{200 + x^2} \).

The production level, in thousands of units, at \(t \) weeks from the present is \(x = 2 + 3t \).

Find the function that models how fast profits are changing with respect to time (that is, find \(\frac{dP}{dt} \)). You do not need to simplify your answer.

\[
P(t) = \frac{300(2+3t)}{200 + (2+3t)^2} = \frac{600 + 900t}{200 + 4 + 12t + 9t^2} = \frac{600 + 900t}{204 + 12t + 9t^2}
\]

\[
P'(t) = \frac{900(204 + 12t + 9t^2) - (12 + 18t)(600 + 900t)}{(204 + 12t + 9t^2)^2}
\]

(Extra credit: What happens to profits in the long run? How do you know?)

If \(t \) is asking \(\lim_{t \to \infty} \frac{600 + 900t}{204 + 12t + 9t^2} = 0 \) (profits approach \(0 \) as \(t \to \infty \) (power in numerator is larger than power in denominator).