Math 105, Precalculus
Quiz 7, Sections 3.6 and 4.1
November 19, 2009

Use of calculators is not permitted on this quiz. Please show all work neatly.

1. Let \(f(x) = \frac{12}{x^2 - 4} \)

 a) Find the following, if they exist. If they do not exist, write “not applicable” and show work to explain why.

 i) x-intercept(s) \(\text{None/N/A} \) (because 12 \(\neq 0 \) anywhere, no variable in numerator) \(1 - \frac{12}{-2} \) if no justification.

 ii) y-intercept \(y = -3 \) \(f(0) = \frac{12}{-2} y = -3 \) if no justification. \(0 \)

 iii) Vertical asymptote(s) \(x = 2, x = -2 \) \(x^2 - 4 = 0 \); \(x + 2 \), \(x - 2 \), \(y = 2 \)

 iv) Horizontal asymptote \(0 \) (degree of denominator is > degree of numerator)

 b) Graph the function \(f(x) \), checking your work by finding at least one function value in each interval you create.

2. Let \(g(x) = 3^x + 4 \).

 a) Compared to the graph of \(f(x) = 3^x \), \(g(x) \) is reflected across the \(y \) axis (if any) and shifted \(\text{up} \) (direction) by \(4 \) units.

 b) Complete the following:

 i) As \(x \to +\infty \), \(g(x) \to +\infty \).

 ii) As \(x \to -\infty \), \(g(x) \to +\infty \).

 iii) The domain of \(g(x) \) is \(\mathbb{R} \).

 iv) \(g(0) = 5 \) \(3^0 + 4 = 5 \)

 v) \(g(1) = \frac{11}{3} \) \(g(1) = 3^{-1} + 4 = \frac{1}{3} + 4 \)

 17 psi
Math 105, Precalculus
Quiz 7, Sections 3.6 and 4.1

Use of calculators is not permitted on this quiz. Please show all work neatly.

1. Let \(f(x) = \frac{9}{x^2 - 9} \)

 a) Find the following, if they exist. If they do not exist, write "not applicable" and show work to explain why.
 i) \(x\)-intercept(s) \(\frac{9}{x^2 - 9} \) Because \(x \neq \pm 3 \), No variables in numerator.
 ii) \(y\)-intercept \(y = -1 \) \((0, -1) \) \(f(0) = \frac{9}{0 - 9} = -1 \)
 iii) Vertical asymptote(s) \(x = -3, x = 3 \) \(-x^2 + 9 = 0 \) \((x+3)(x-3) = 0 \), \(x = -3, x = 3 \)
 iv) Horizontal asymptote \(y = 0 \) (degree of denominator > degree of numerator)

 b) Graph the function \(f(x) \), checking your work by finding at least one function value in each interval you create.

2. Let \(g(x) = 4^{-x} - 2 \).

 a) Compared to the graph of \(f(x) = 4^x \), \(g(x) \) is reflected across the \(y \)-axis (if any) and shifted \(\text{down} \) (direction) by \(2 \) units.

 b) Complete the following:
 i) As \(x \to -\infty \), \(g(x) \to -\infty \)
 ii) As \(x \to +\infty \), \(g(x) \to -2 \) \((\text{Horizontal Asymptote}) \)
 iii) The domain of \(g(x) \) is \((-\infty, \infty) \)
 iv) \(g(1) = \frac{-1^3}{4} = -\frac{1}{4} \)
 v) \(g(0) = \frac{-1}{4} \), \(4^{-0.5} = 1/2^{-1} = 2 \times 1/4 = 1/2 \)

 c) The graph of \(h(x) = 4^{-x} + 2 \) is obtained by \(\text{up} \) (direction) \(2 \) units of \(g(x) \).