Math 105, Precalculus
Quiz 2, Sections 1.7, 1.8, 1.10
Name ANSWER KEY A
September 17, 2009

Please show all work neatly. Use of calculators is NOT permitted.

1. Solve the inequality: \(\frac{x}{x+1} > 1 \).

\[
\frac{x}{x+1} - 1 > 0
\]

\[
\frac{x}{x+1} - \frac{x-1}{x+1} = \frac{-1}{x+1} > 0
\]

Let \(x+1 = 0 \); \(x = -1 \)

Solution: \(\{ x \mid x < -1 \} \) or \((-\infty, -1) \)

2. Use the points \(P(-1,1) \) and \(Q(2,7) \) to answer parts a-c below.
 a) Which of the points is closer to the point \(S(-2,5) \)?

 Use distance formula: \(d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} \).

 \[
d = \sqrt{(2-(-2))^2 + (7-5)^2} = \sqrt{4^2 + 2^2} = \sqrt{20}
\]

 Conclusion: point \(P \) is closer.

 b) Find the equation (in slope-intercept form) of the line through \(P \) and \(Q \).

 slope \(= \frac{7-1}{2 - (-1)} = \frac{6}{3} = 2 \).

 \[\frac{y - 1}{x + 1} = \frac{2}{1} \]

 \[y - 1 = 2(x + 1) = 2x + 2 \]

 \[y = 2x + 3 \]

 (choose either point)

 c) Find the equation (in slope-intercept form) of the line perpendicular to the line in part b, and through the point \((4, 4) \).

 \[m_1 = -\frac{1}{2} \]

 \[4 = -\frac{1}{2}(4) + b \]

 \[b = 6 \]

 \[y = -\frac{1}{2}x + 6 \]

3. Determine whether the equation represents a circle, a point, or has no graph. If the equation is that of a circle, find its center and radius.

 \[x^2 + y^2 - 14x + 45 = 0 \]

 \[x^2 - 14x + y^2 = -45 \]

 \[(x-7)^2 + y^2 = 4 \]

 Solution: \(b = -14 \)

 \[b = -\frac{14}{2} = -7 \]

 \[(\frac{b}{2})^2 = (-7)^2 = 49 \]

 Equation is a circle,
 with center \((7, 0) \)
 radius = \(\sqrt{4} = 2 \)
Math 105, Precalculus
Quiz 2, Sections 1.7, 1.8, 1.10

September 17, 2009

Please show all work neatly. Use of calculators is NOT permitted.

1. Solve the inequality: \(\frac{x}{x+3} > 1 \).

\[
\frac{x}{x+3} - 1 > 0
\]

\[
\frac{x}{x+3} - \frac{(x+3)}{(x+3)} = \frac{x-x-3}{x+3} = \frac{-3}{x+3} > 0
\]

\(x+3 = 0, x = -3 \)

\[\text{Solution: } \{ x | x < -3 \} \text{ or } (-\infty, -3) \]

2. Use the points \(P(-1,1) \) and \(Q(1,5) \) to answer parts a-c below.

a) Which of the points is closer to the point \(S(-3,4) \)?

Use distance formula: \(d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} \)

\[
d_{P} = \sqrt{(-3+1)^2 + (4-1)^2} = \sqrt{4+9} = \sqrt{13}
\]

\[
d_{Q} = \sqrt{(-3-1)^2 + (4-5)^2} = \sqrt{16+1} = \sqrt{17}
\]

Point \(P \) is closer.

b) Find the equation (in slope-intercept form) of the line through \(P \) and \(Q \).

\[
m = \frac{5-1}{1+1} = \frac{4}{2} = 2
\]

\[
1 = 2(-1)+b, \quad b = 3
\]

\[
y = 2x+3
\]

(Choose either point)

\[
c) \text{ Find the equation (in slope-intercept form) of the line perpendicular to the line in part b, and through the point } (4,4).
\]

\[
m_1 = -\frac{1}{2}
\]

Solve for \(b \):

\[
4 = -\frac{1}{2}(4)+b, \quad b = 2
\]

\[
\therefore \quad y = -\frac{1}{2}x+6
\]

\[
o \quad y - 4 = -\frac{1}{2}(x-4) = -\frac{1}{2}x+2
\]

\[
y = -\frac{1}{2}x+6
\]

3. Determine whether the equation represents a circle, a point, or has no graph. If the equation is that of a circle, find its center and radius.

\[
x^2 + y^2 - 12y + 27 = 0
\]

\[
x^2 + y^2 - 12y = -27
\]

\[
x^2 + (y-6)^2 = 9
\]

Equation of a circle with center \((0,6)\)

radius: \(\sqrt{9} = 3 \).